representing doors in ER schema - sql

I have something like this in my ERD.
Note that there can be two rooms connected by more than 1 door.
Translating this in tables I get that every couple door-room is repeated twice (One time as entry and another time as exit). So I simplified my ERD schema like
[this]
Where room1 and room2 are foreign keys.
During lecture we never saw an '' ísolated '' (without relationships)
entity but browsing here on Stack Overflow i saw someone saying that was possible and correct.
Is my solution above correct?

Yes, there can be isolated entities in a diagram.
But your corrected diagram is incomplete: it gives the impression that the entities are isolated whereas they are not; doors and rooms are related and the relationship should appear.
If you'd correct this relation, you'd have something similar to the first diagram, but instead of IN and OUT, you'd have BETWEEN 1 and BETWEEN 2.
You would then immediately notice that your design is not fully equivalent to the original one: the original design allows to represent unidirectional doors. This sounds strange, but if you go in large office buildings, you'll see for example that:
some doors are emergency only doors: you can open it to access the emergency exit stairs, but in the stairs, you cannot go back.
some doors have a handle on only one side to allow exit an office, but yopu have to enter via another one.
The original design requires many duplicate doors because of the unidirectional design (this facilitates graph exploration algorithm). You could still achieve the same expressiveness, by adding either two attributes from_1_to_2 and from_2_to_1 or a single attribute direction which could have three values (unidirectional from 1 to 2, unidirectional from 2 to 1, or bidirectional, the encoding is left as an exercise).
This revised design would be superior to the original design, since it would prevent redundancy, and facilitate normalization if other information about doors need to be recorded (e.g. material, type of lock, fire resistance, automatic closing or not, serial number, etc...).

Related

Concern About Developing Entity Relationship Diagrams using Matrix Diagrams

I am currently enrolled in the Online Oracle Academy Database Design course, which briefly delves into the use of Matrix Diagrams to make sure all possible relationships are covered in an Entity Relationship Diagram.
The following practice problem was supplied by the course, instructing us to complete a matrix diagram for four entities: RUNNER, CITY FOR RACE, RACE TYPE, and RUNNING EVENT
The following is the supplied solution from the course:
I was able to find the following alternative solution for the same problem:
My concern stems from just how radically different these two ERDs are from each other. Is it better practice to come up with as many relationships as possible, even going so far as to fill out all boxes in the Matrix Diagram, or do something more akin to the first solution. Or is this simply an issue which should be handled based off of the current situation and the needs of the business that we are creating the ERD for?
They are not radically different. The second ERD has all the relationships of the first, it just expands due to the presumption that the knowledge that:
a runner has visited a city (if for instance you want to know if runners actually made it to a race after having registered for it)
an event may consist of multiple race types, implying a different model for what an event actually is
or that a runner has chosen a race type (I'm having a more difficult time thinking of a sensible reason here, but there are possibilities)
is important to whatever it is this database is supporting.
If you do not have such a reason to track a relationship, it's wasted effort to do so. It's good to keep future possibilities in mind when considering whether you have a reason, but Ockham's Razor is very much a guiding principle in schema design.

Is this Library Management System ER diagram correct?

Quick question about an ER/EER Diagram.
I have made this Entity Relationship Diagram, but I have been told, that there is something wrong with it by a friend. Is there something wrong with it?
The ER diagram is a design of a Library Management System, where a member can borrow 5 books at a time. The rest of the functionality of the system is how a normal library functions.
Library Management System EER
i don't understand the utility of the relationship between the librarian and the card and i don't understand why the books are splitted in two entities.
I would do 3 entities:
-member
-card
-book
every member has one card, every card is of one member;
every member can take many books, every book can be taken by many members,
the relation between member and book create another table in the logic schema: loans. before inserting a new loan you can check if the member has alredy 5 active loans (by checking the attribute active in the loans table).
Your given context is incomplete for me. I do not see the whole description of your problem/situation, so I will answer based on assumptions, and the experience I had during my life. So let's see...
The tino user questioned the existence of two entities, title and volume, which is something important. Let me explain this for a moment, which will eliminate this as an error. Previously (a time ago) we had video rental stores (I don't know if this the right name where you live, english is not my native language). Remember? We used to go there to rent VHS tapes to watch at home.
What we rented were not films, but more copies/midia of them. A film will always have the same actor, director, title, etc., but a copy could have different attributes/properties, like the year that the media was manufactured, the available languages, the expiration year, among other things. So we had distinctly two different things.
But despite this, we have to consider whether there is a need to create two entities for persistence. We have to remember if we need to persist this information. If a copy/midia has no attributes, then it's entity should not exist, and what a user would rent really would be the movies titles.
In your case, the relationship between volume and title, I belive, is really expressing this discrepancy.
Let's talk about the relationship between librarian and title. What a librarian manages? Does It manages the titles that never change and are abstract things, or the physical objects present in the library? :)
Finally, let's talk about the borrows relationship. When we break down 1-N (or N-1) relationships, we always pass the primary key from the 1 side to the N side, solving the relationship to the formation of the Physical Model in a Entity-Relationship Diagram.
Despite this relationship here is a 0-5, to decompose it, we will not have exactly a 0-5 relationship. We would have in anyway to pass the primary key from the two sides to the table formed by this relationship. Therefore, here we have initially a N-N relationship between member and volume.
N-N relationships allow optional relations between entities. This means we can have the zero side cardinality here. To limit the number of books that can be rented, you need to implement a restriction/constraint with SQL, or with any procedural language in your database. In this case, you can implement a before insert trigger. This trigger has a duty to verify this restriction to allow or denny the completion of the operation as a whole.
Let it be clear that I'm not saying you should remove this notation. Your Conceptual Model should express it. But when you are decomposing, you have to remember that. I think you should just correct it.
Remember one important rule: Relations that have attributes/properties (the attributes/properties) can only exist in N-N relationships. If you have to put attributes/properties in a 1-N (or a N-1) relation, they (the attributes/properties) will always be on the N side. In summary, there are no N-1 (or 1-N) relationships with attributes in the relation. Only N-N relations can have attributes/properties. So be careful with this.
Any questions or clarification, please comment and I will answer.
I see no reason to distinguish member and card. Volume and Librarian don't have primary keys. Are they supposed to be weak entities? That doesn't make sense for Librarian and Volume needs an identifier to distinguish different copies.

What are the pros and cons of Anchor Modeling? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I am currently trying to create a database where a very large percentage of the data is temporal. After reading through many techniques for doing this (most involving 6nf normalization) I ran into Anchor Modeling.
The schema that I was developing strongly resembled the Anchor Modeling model, especially since the use case (Temporal Data + Known Unknowns) is so similar, that I am tempted to embrace it fully.
The two biggest problem I am having is that I can find nothing detailing the negatives of this approach, and I cannot find any references to organizations that have used it in production for war-stories and gotchas that I need to be aware of.
I am wondering if anyone here is familiar enough with to briefly expound on some of the negatives (since the positives are very well advertized in research papers and their site), and any experiences with using it in a production environment.
In reference to the anchormodeling.com
Here are a few points I am aware of
The number of DB-objects is simply too large to maintain manually, so make sure that you use designer all the time to evolve the schema.
Currently, designer supports fully MS SQL Server, so if you have to port code all the time, you may want to wait until your target DB is fully supported. I know it has Oracle in dropdown box, but ...
Do not expect (nor demand) your developers to understand it, they have to access the model via 5NF views -- which is good. The thing is that tables are loaded via (instead-of-) triggers on views, which may (or may not) be a performance issue.
Expect that you may need to write some extra maintenance procedures (for each temporal attribute) which are not auto-generated (yet). For example, I often need a prune procedure for temporal attributes -- to delete same-value-records for the same ID on two consecutive time-events.
Generated views and queries-over-views resolve nicely, and so will probably anything that you write in the future. However, "other people" will be writing queries on views-over-views-over-views -- which does not always resolve nicely. So expect that you may need to police queries more than usual.
Having sad all that, I have recently used the approach to refactor a section of my warehouse, and it worked like a charm. Admittedly, warehouse does not have most of the problems outlined here.
I would suggest that it is imperative to create a demo-system and test, test, test ..., especially point No 3 -- loading via triggers.
With respect to point number 4 above. Restatement control is almost finished, such that you will be able to prevent two consecutive identical values over time.
And a general comment, joins are not necessarily a bad thing. Read: Why joins are a good thing.
One of the great benefits of 6NF in Anchor Modeling is non-destructive schema evolution. In other words, every previous version of the database model is available as a subset in the current model. Also, since changes are represented by extensions in the schema (new tables), upgrading a database is almost instantanous and can safely be done online (even in a production environment). This benefit would be lost in 5NF.
I haven't read any papers on it, but since it's based on 6NF, I'd expect it to suffer from whatever problems follow 6NF.
6NF requires each table consist of a candidate key and no more than one non-key column. So, in the worst case, you'll need nine joins to produce a 10-column result set. But you can also design a database that uses, say, 200 tables that are in 5NF, 30 that are in BCNF, and only 5 that are in 6NF. (I think that would no longer be Anchor Modeling per se, which seems to put all tables in 6NF, but I could be wrong about that.)
The Mythical Man-Month is still relevant here.
The management question, therefore, is not whether to build a pilot system and throw it away. You will do that. The only question is whether to plan in advance to build a throwaway, or to promise to deliver the throwaway to customers.
Fred Brooks, Jr., in The Mythical Man-Month, p 116.
How cheaply can you build a prototype to test your expected worst case?
In this post I will present a large part of the real business that belong to databases. Database's solutions in this big business area can not be solved by using „Anchor modeling" , at all.
In the real business world this case is happening on a daily basis. That is the case when data entry person, enters a wrong data.
In real-world business, errors happen frequently at data entry level. It often happens that data entry generates large amounts of erroneous data. So this is a real and big problem. "Anchor modeling" can not solve this problem.
Anyone who uses the "Anchor Modeling" database can enter incorrect data. This is possible because the authors of "Anchor modeling" have written that the erroneous data can be deleted.
Let me explain this problem by the following example:
A profesor of mathematics gave the best grade to the student who had the worst grade. In this high school, professors enter grades in the corressponding database. This student gave money to the professor for this criminal service. The student managed to enroll at the university using this false grade.
After a summer holiday, the professor of mathematics returned to school. After deleting the wrong grade from the database, the professor entered the correct one in the database. In this school they use "Anchor Modeling" db. So the math profesor deleted false data as it is strictly suggested by authors of "Anchor modeling".
Now, this professor of mathematics who did this criminal act is clean, thanks to the software "Anchor modeling".
This example says that using "Anchor Modeling," you can do crime with data just by applying „Anchor modeling technology“
In section 5.4 the authors of „Anchor modeling“ wrote the following: „Delete statements are allowed only when applied to remove erroneous data.“ .
You can see this text at the paper „ An agile modeling technique using sixth normal form for structurally evolving data“ written by authors of „Anchor modeling“.
Please note that „Anchor modeling“ was presented at the 28th International Conference on Conceptual Modeling and won the best paper award?!
Authors of "Anchor Modeling" claim that their data model can maintain a history! However this example shoes that „Anchor modeling“ can not maintain the history at all.
As „Anchor modeling“ allows deletion of data, then "Anchor modeling" has all the operations with the data, that is: adding new data, deleting data and update. Update can be obtained by using two operations: first delete the data, then add new data.
This further means that Anchor modeling has no history, because it has data deletion and data update.
I would like to point out that in "Anchor modeling" each erroneous data "MUST" be deleted. In the "Anchor modeling" it is not possible to keep erroneous data and corrected data.
"Anchor modeling" can not maintain history of erroneous data.
In the first part of this post, I showed that by using "Anchor Modeling" anyone can do crime with data. This means "Anchor Modeling" runs the business of a company, right into a disaster.
I will give one example so that professionals can see on real and important example, how bad "anchor modeling" is.
Example
People who are professionals in the business of databases, know that there are thousands and thousands of international standards, which have been used successfully in databases as keys.
International standards:
All professionals know what is "VIN" for cars, "ISBN" for books, and thousands of other international standards.
National standards:
All countries have their own standards for passports, personal documents, bank cards, bar codes, etc
Local standards:
Many companies have their own standards. For example, when you pay something, you have an invoice with a standard key written and that key is written in the database, also.
All the above mentioned type of keys from this example can be checked by using a variety of institutions, police, customs, banks credit card, post office, etc. You can check many of these "keys" on the internet or by using a phone.
I believe that percent of these databases, which have entities with standard keys, and which I have presented in this example, is more than 95%.
For all the above cases the "anchor surrogate key" is nonsense. "Anchor modeling" exclusively uses "anchor-surrogate key"
In my solution, I use all the keys that are standard on a global or local level and are simple.
Vladimir Odrljin

T-SQL database design and tables

I'd like to hear some opinions or discussion on a matter of database design. Me and my colleagues are developing a complex application in finance industry that is being installed in several countries.
Our contractors wanted us to keep a single application for all the countries so we naturally face the difficulties with different workflows in every one of them and try to make the application adjustable to satisfy various needs.
The issue I've encountered today was a request from the head of the IT department from the contractors side that we keep the database model in terms of tables and columns they consist of.
For examlpe, we got a table with different risks and we needed to add a flag column IsSomething (BIT NOT NULL ...). It fully qualifies to exists within the risk table according to the third normal form, no transitive dependency to the key, a non key value ...
BUT, the guy said that he wants to keep the tables as they are so we had to make a new table "riskinfo" and link the data 1:1 to the new column.
What is your opinion ?
We add columns to our tables that are referenced by a variety of apps all the time.
So long as the applications specifically reference the columns they want to use and you make sure the new fields are either nullable or have a sensible default defined so it doesn't interfere with inserts I don't see any real problem.
That said, if an app does a select * then proceeds to reference the columns by index rather than name you could produce issues in existing code. Personally I have confidence that nothing referencing our database does this because of our coding conventions (That and I suspect the code review process would lynch someone who tried it :P), but if you're not certain then there is at least some small risk to such a change.
In your actual scenario I'd go back to the contractor and give your reasons you don't think the change will cause any problems and ask the rationale behind their choice. Maybe they have some application-specific wisdom behind their suggestion, maybe just paranoia from dealing with other companies that change the database structure in ways that aren't backwards-compatible, or maybe it's just a policy at their company that got rubber-stamped long ago and nobody's challenged. Till you ask you never know.
This question is indeed subjective like what Binary Worrier commented. I do not have an answer nor any suggestion. Just sharing my 2 cents.
Do you know the rationale for those decisions? Sometimes good designs are compromised for the sake of not breaking currently working applications or simply for the fact that too much has been done based on the previous one. It could also be many other non-technical reasons.
Very often, the programming community is unreasonably concerned about the ripple effect that results from redefining tables. Usually, this is a result of failure to understand data independence, and failure to guard the data independence of their operations on the data. Occasionally, the original database designer is at fault.
Most object oriented programmers understand encapsulation better than I do. But these same experts typically don't understand squat about data independence. And anyone who has learned how to operate on an SQL database, but never learned the concept of data independence is dangerously ignorant. The superficial aspects of data independence can be learned in about five minutes. But to really learn it takes time and effort.
Other responders have mentioned queries that use "select *". A select with a wildcard is more data dependent than the same select that lists the names of all the columns in the table. This is just one example among dozens.
The thing is, both data independence and encapsulation pursue the same goal: containing the unintended consequences of a change in the model.
Here's how to keep your IT chief happy. Define a new table with a new name that contains all the columns from the old table, and also all the additional columns that are now necessary. Create a view, with the same name as the old table, that contains precisely the same columns, and in the same order, that the old table had. Typically, this view will show all the rows in the old table, and the old PK will still guarantee uniqueness.
Once in a while, this will fail to meet all of the IT chief's needs. And if the IT chief is really saying "I don't understand databases; so don't change anything" then you are up the creek until the IT chief changes or gets changed.

DDD: Modeling M:N relation between two roots where the relation itself carries semantic meaning

Update Edited to reflect clarifications requested by Chris Holmes below. Originally I was referring to a Terminal as a Site but changed it to better reflect my actual domain.
At heart, I think this is a question about modeling a many to many relationship between two root entities where the relationship itself carries some semantic meaning.
In my domain
You can think of a Terminal as a branch location of our company
A Terminal can have a relationship with any number of customers
A customer can have a relationship with any number of terminals (standard many to many)
A customer\terminal relationship means that a customer can potentially store products at the Terminal
This relationship can be enabled\disabled. To be disabled merely means you are temporarily not allowed to store product, so a disabled relationship is different from no relationship at all.
A customer can have many Offices
A Terminal that has a relationship with a customer (enabled or not) must have a default office for that customer that they communicate with
There are some default settings that are applied to all transactions between a Customer and a Terminal, these are set up on a Terminal-Customer Relationship level
I think my objects here are pretty clear, Terminal, Customer, Office, and TerminalCustomerRelationship (since there is information being stored specifically about the relationship such as whether it is enabled, default office, ad default settings). Through multiple refactorings I have determined that both Terminal and Customer should probably be aggregate roots. This leaves me with the question of how to design my TerminalCustomerRelationship object to relate the two.
I suppose I could make the traversal from Terminal to TerminalCustomerRelationship unidirectional toward the relationship but I don't know how to break the relation from the relationship to the customer, especially since it needs to contain a reference to an Office which has a relationship to a Customer.
I'm new to this stuff and while most of DDD makes perfect sense I'm getting confused and need a fresh outlook. Can someone give me their opinion on how to deal with this situation?
Please note that I say Relationship not relation. In my current view it deserves to be an object in the same way that a Marriage would be an object in an application for a wedding chapel. Its most visible purpose is that it relates two objects, but it has other properties that rightfully belong to it as well.
By your description, you definitely need a "TerminalCustomerRelationship" entity to track the associated information. I would also convert the 'IsEnabled' flag into a first class 'Event' entity with a timestamp - this gives you the ability to save a history of the state changes (a more realistic view of what's happening in the domain.)
Here's a sample application (in VS2008) that refects your problem. You can tweak/test the code until the relationships make sense. Run "bin/debug/TerminalSampleApp.exe" and right-click "Terminal->Create Example" to get started.
Let me know if you find it useful.
Names can often clarify an object's responsibilities and bring a domain model into focus.
I am unclear what a Site is and that makes the entire model confusing, which makes it difficult for me to offer better advice. If a Site were a Vendor, for instance, then it would be easy to rename SiteCustomerRelationship as a Contract. In that context it makes perfect sense for Contract to be its own entity, and have the the model look like Vendor-Contract-Customer-Office.
There are other ways to look at this as well. Udi has a decent post on this sort of many-to-many relationship here.
You should not have a object Like SiteCustomerRelationship, its DB specific.
If its truly DDD you should have a Relation like:
Aggregate<Site> Customer.Site
IEnumerable<Aggregate<Office>> Customer.Offices
and perhaps
Aggregate<Office> Customer.DefaultOffice