How to flat a string to several columns in pandas? - pandas

fruit = pd.DataFrame({'type': ['apple: 1 orange: 2 pear: 3']})
I want to flat the dataframe and get the below format:
apple orange pear
1 2 3
Thanks

You are making your live extremely difficult if you work with multiple values in a single field. You can basically use none of the pandas functions because they all assume they data in a field belong together and should stay together.
For instance with
In [10]: fruit = pd.Series({'apple': 1, 'orange': 2, 'pear': 3})
In [11]: fruit
Out[11]:
apple 1
orange 2
pear 3
dtype: int64
you could easily transform your data as in
In [14]: fruit.to_frame()
Out[14]:
0
apple 1
orange 2
pear 3
In [15]: fruit.to_frame().T
Out[15]:
apple orange pear
0 1 2 3

Related

Copy first of group down and sum total - pre defined groups

I have previously asked how to iterate through a prescribed grouping of items and received the solution.
import pandas as pd
data = [['apple', 1], ['orange', 2], ['pear', 3], ['peach', 4],['plum', 5], ['grape', 6]]
#index_groups = [0],[1,2],[3,4,5]
df = pd.DataFrame(data, columns=['Name', 'Number'])
for i in range(len(df)):
print(df['Number'][i])
Name Age
0 apple 1
1 orange 2
2 pear 3
3 peach 4
4 plum 5
5 grape 6
where :
for group in index_groups:
print(df.loc[group])
gave me just what I needed. Following up on this I would like to now sum the numbers per group but also copy down the first 'Name' in each group to the other names in the group, and then concatenate so one line per 'Name'.
In the above example the output I'm seeking would be
Name Age
0 apple 1
1 orange 5
2 peach 15
I can append the sums to a list easy enough
group_sum = []
group_sum.append(sum(df['Number'].loc[group]))
But I can't get the 'Names' in order to merge with the sums.
You could try:
df_final = pd.DataFrame()
for group in index_groups:
_df = df.loc[group]
_df["Name"] = df.loc[group].Name.iloc[0]
df_final = pd.concat([df_final, _df])
df_final.groupby("Name").agg(Age=("Number", "sum")).reset_index()
Output:
Name Age
0 apple 1
1 orange 5
2 peach 15

Python pandas dataframe, how to get the set number

Here is eaxmple:
df=pd.DataFrame([('apple'),('apple'),('apple'),('orange'),('orange')],columns=['A'])
df
Out[5]:
A
0 apple
1 apple
2 apple
3 orange
4 orange
I want to assign a number next to it, example, apple is the first set of list ['apple','orange'], B column is 1, then 2 for orange:
A B
0 apple 1
1 apple 1
2 apple 1
3 orange 2
4 orange 2
Bellow wouldn't work.
df['B']=df['A'].tolist().index(df['A']) +1
You can use the pd.factorize function. This function is used to convert arrays into categorical ones.
pd.Series.factorize is also available as a method of pd.Series objects:
codes, _ = df["A"].factorize()
df["B"] = codes + 1
print(df)
A B
0 apple 1
1 apple 1
2 apple 1
3 orange 2
4 orange 2
use groupby ngroup + 1 with sort=False to ensure groups are enumerated in the order they appear in the DataFrame:
df['B'] = df.groupby('A', sort=False).ngroup() + 1
df:
A B
0 apple 1
1 apple 1
2 apple 1
3 orange 2
4 orange 2

Re-define dataframe index with map function

I have a dataframe like this. I wanted to know how can I apply map function to its index and rename it into a easier format.
df = pd.DataFrame({'d': [1, 2, 3, 4]}, index=['apple_017', 'orange_054', 'orange_061', 'orange_053'])
df
d
apple_017 1
orange_054 2
orange_061 3
orange_053 4
There are only two labels in the indeces of the dataframe, so it's either apple or orange in this case and this is how I tried:
data.index = data.index.map(i = "apple" if "apple" in i else "orange")
(Apparently it's not how it works)
Desired output:
d
apple 1
orange 2
orange 3
orange 4
Appreciate anyone's help and suggestion!
Try via split():
df.index=df.index.str.split('_').str[0]
OR
via map():
df.index=df.index.map(lambda x:'apple' if 'apple' in x else 'orange')
output of df:
d
apple 1
orange 2
orange 3
orange 4

How do you groupby and aggregate using conditional statements in Pandas?

Expanding on the question here, I'm wondering how to add aggregation to the following based on conditions:
Index Name Item Quantity
0 John Apple Red 10
1 John Apple Green 5
2 John Orange Cali 12
3 Jane Apple Red 10
4 Jane Apple Green 5
5 Jane Orange Cali 18
6 Jane Orange Spain 2
7 John Banana 3
8 Jane Coconut 5
9 John Lime 10
... And so forth
What I need to do is getting this data converted into a dataframe like the following. Note: I am only interested in getting the total quantity of the apples and oranges both of them in separate columns, i.e. whatever other items appear in a certain group are not to be included in the aggregation done on column "Quantity" (but they are still to appear in the column "All items" as strings):
Index Name All Items Apples Total Oranges Total
0 John Apple Red, Apple Green, Orange Cali, Banana, Lime 15 12
1 Jane Apple Red, Apple Green, Orange Cali, Coconut 15 20
How would do I achieve that? Many thanks in advance!
You can use groupby and pivot_table after extracting Apple and Orange sub strings as below:
import re
s = df['Item'].str.extract("(Apple|Orange)",expand=False,flags=re.I)
# re.I used above is optional and is used for case insensitive matching
a = df.assign(Item_1=s).dropna(subset=['Item_1'])
out = (a.groupby("Name")['Item'].agg(",".join).to_frame().join(
a.pivot_table("Quantity","Name","Item_1",aggfunc=sum).add_suffix("_Total"))
.reset_index())
print(out)
Name Item Apple_Total \
0 Jane Apple Red,Apple Green,Orange Cali,Orange Spain 15
1 John Apple Red,Apple Green,Orange Cali 15
Orange_Total
0 20
1 12
EDIT:
For edited question, you can use the same code only except groupby on the original dataframe df instead of the subset a and then join:
out = (df.groupby("Name")['Item'].agg(",".join).to_frame().join(
a.pivot_table("Quantity","Name","Item_1",aggfunc=sum).add_suffix("_Total"))
.reset_index())
print(out)
Name Item Apple_Total \
0 Jane Apple Red,Apple Green,Orange Cali,Orange Spain... 15
1 John Apple Red,Apple Green,Orange Cali,Banana,Lime 15
Orange_Total
0 20
1 12
First Filter only the required rows using str.contains on the column Item
from io import StringIO
import pandas as pd
s = StringIO("""Name;Item;Quantity
John;Apple Red;10
John;Apple Green;5
John;Orange Cali;12
Jane;Apple Red;10
Jane;Apple Green;5
Jane;Orange Cali;18
Jane;Orange Spain;2
John;Banana;3
Jane;Coconut;5
John;Lime;10
""")
df = pd.read_csv(s,sep=';')
req_items_idx = df[df.Item.str.contains('Apple|Orange')].index
df_filtered = df.loc[req_items_idx,:]
Once you have them you can further pivot the data to get the required values based on Name
pivot_df = pd.pivot_table(df_filtered,index=['Name'],columns=['Item'],aggfunc='sum')
pivot_df.columns = pivot_df.columns.droplevel()
pivot_df.columns.name = None
pivot_df = pivot_df.reset_index()
Generate the Totals for Apples and Oranges
orange_columns = pivot_df.columns[pivot_df.columns.str.contains('Orange')].tolist()
apple_columns = pivot_df.columns[pivot_df.columns.str.contains('Apple')].tolist()
pivot_df['Apples Total'] = pivot_df.loc[:,apple_columns].sum(axis=1)
pivot_df['Orange Total'] = pivot_df.loc[:,orange_columns].sum(axis=1)
A wrapper function to combine the Items together
def combine_items(inp,columns):
res = []
for val,col in zip(inp.values,columns):
if not pd.isnull(val):
res += [col]
return ','.join(res)
req_columns = apple_columns+orange_columns
pivot_df['Items'] = pivot_df[apple_columns+orange_columns].apply(combine_items,args=([req_columns]),axis=1)
Finally you can get the required columns in a single place and print the values
total_columns = pivot_df.columns[pivot_df.columns.str.contains('Total')].tolist()
name_item_columns = pivot_df.columns[pivot_df.columns.str.contains('Name|Items')].tolist()
>>> pivot_df[name_item_columns+total_columns]
Name Items Apples Total Orange Total
0 Jane Apple Green,Apple Red,Orange Cali,Orange Spain 15.0 20.0
1 John Apple Green,Apple Red,Orange Cali 15.0 12.0
The answer is intended to outline the individual steps and approach one can take to solve something similar to this
Edits: fixed a bug.
To do this, before doing your groupby you can create your Total columns. These will contain a the number of apples and oranges in that row, depending whether that row's Item is apple or orange.
df['Apples Total'] = df.apply(lambda x: x.Quantity if ('Apple' in x.Item) else 0, axis=1)
df['Oranges Total'] = df.apply(lambda x: x.Quantity if ('Orange' in x.Item) else 0, axis=1)
When this is in place, groupby name and aggregate on each column. Sum on the total columns, and aggregate to list on the item column.
df.groupby('Name').agg({'Apples Total': 'sum',
'Oranges Total': 'sum',
'Item': lambda x: list(x)
})
df = pd.read_csv(StringIO("""
Index,Name,Item,Quantity
0,John,Apple Red,10
1,John,Apple Green,5
2,John,Orange Cali,12
3,Jane,Apple Red,10
4,Jane,Apple Green,5
5,Jane,Orange Cali,18
6,Jane,Orange Spain,2
7,John,Banana,3
8,Jane,Coconut,5
9,John,Lime,10
"""))
Getting list of items
grouping by name to get the list of items
items_list = pd.DataFrame(df.groupby(["Name"])["Item"].apply(list)).rename(columns={"Item": "All Items"})
items_list
All Items
Name
Jane [Apple Red, Apple Green, Orange Cali, Orange Spain, Coconut]
John [Apple Red, Apple Green, Orange Cali, Banana, Lime]
getting count of name item groups
renaming the temp df items column such that all the apples/oranges are treated similarly
temp2 = df.groupby(["Name", "Item"])['Quantity'].apply(sum)
temp2 = pd.DataFrame(temp2).reset_index().set_index("Name")
temp2['Item'] = temp2['Item'].str.replace(r'(?:.*)(apple|orange)(?:.*)', r'\1', case=False,regex=True)
temp2
Item Quantity
Name
Jane Apple 5
Jane Apple 10
Jane Coconut 5
Jane Orange 18
Jane Orange 2
John Apple 5
John Apple 10
John Banana 3
John Lime 10
John Orange 12
getting the required pivot table
pivot table for getting items count as separate column and retaining just apple orange count
pivot_df = pd.pivot_table(temp2, values='Quantity', columns='Item', index=["Name"], aggfunc=np.sum)
pivot_df = pivot_df[['Apple', 'Orange']]
pivot_df
Item Apple Orange
Name
Jane 15.0 20.0
John 15.0 12.0
merging the items list df and the pivot_df
output = items_list.merge(pivot_df, on="Name").rename(columns = {'Apple': 'Apples
Total', 'Orange': 'Oranges Total'})
output
All Items Apples Total Oranges Total
Name
Jane [Apple Red, Apple Green, Orange Cali, Orange Spain, Coconut] 15.0 20.0
John [Apple Red, Apple Green, Orange Cali, Banana, Lime] 15.0 12.0

pandas search a value in a dataframe column

I have following dataframe and i want to search apple in column fruits and display all the rows if apple is found.
Before :
number fruits purchase
0 apple yes
mango
banana
1 apple no
cheery
2 mango yes
banana
3 apple yes
orange
4 grapes no
pear
After:
number fruits purchase
0 apple yes
mango
banana
1 apple no
cheery
3 apple yes
orange
Use groupby and filter to filter groups that contain 'apple':
df['number'] = df['number'].ffill()
df.groupby('number').filter(lambda x: (x['fruits'] == 'apple').any())
df_out.assign(number = df_out['number'].mask(df.number.duplicated()))\
.replace(np.nan,'')
Output:
number fruits purchase
0 0 apple yes
1 mango
2 banana
3 1 apple no
4 cheery
7 3 apple yes
8 orange
It looks like you're using 'number' as the index, so I'm going to assume that.
Get the numbers where 'apple' is present, and slice into those:
idx = df.index[df.fruits == 'apple']
df.loc[idx]