HIVE join taking too long, but is fast on Impala - hive

i have a query like the below. This query runs in 15 seconds on Impala, but when I run the same on HIVE, it takes 10+ minutes. I have to join several other tables to this query (with similar joins as the below) and the total time it takes is more than 1 hour(sometimes it fails/gets stuck after an hour), but on Impala it runs within a minute.
Can you please tell me why this might be happening and how I might be able to optimize the below join on hive?
SELECT count(*)
FROM table_A A
LEFT JOIN table_B B ON cast(A.value AS decimal(5, 2)) BETWEEN B.fromvalue AND B.tovalue
AND A.date BETWEEN B.fromdate AND B.todate ;

Check query plan and try to configure mapjoin.
Theta joins (non-equality joins) like yours are implemented using cross join + filter in Hive. In case of Map join it will work much faster.
See here how to configure map-join: https://stackoverflow.com/a/49154414/2700344.
Check query plan again and make sure the MapJoinOperator is used.
Even with mapjoin, Hive is slower than Impala, though can process bigger datasets.

Hive is running basic map reduce tasks (which are very slow by nature).
Also, joins work best with equi-joins (colA = colB) and you are not doing any equi-joins. (between is colA >= colB and colA <= colC)
One of the main feature of Impala is to be really fast when reading data.
So basically, yes, Hive is slow compare to Impala, and there is not much you can do about it. That's just how it is.
Also, you are doing a count over a left join which means that, if there is not duplicates, the output will be the number of line in A. So maybe, you do not need the join ...

Related

How to improve SQL query performance containing partially common subqueries

I have a simple table tableA in PostgreSQL 13 that contains a time series of event counts. In stylized form it looks something like this:
event_count sys_timestamp
100 167877672772
110 167877672769
121 167877672987
111 167877673877
... ...
With both fields defined as numeric.
With the help of answers from stackoverflow I was able to create a query that basically counts the number of positive and negative excess events within a given time span, conditioned on the current event count. The query looks like this:
SELECT t1.*,
(SELECT COUNT(*) FROM tableA t2
WHERE t2.sys_timestamp > t1.sys_timestamp AND
t2.sys_timestamp <= t1.sys_timestamp + 1000 AND
t2.event_count >= t1.event_count+10)
AS positive,
(SELECT COUNT(*) FROM tableA t2
WHERE t2.sys_timestamp > t1.sys_timestamp AND
t2.sys_timestamp <= t1.sys_timestamp + 1000 AND
t2.event_count <= t1.event_count-10)
AS negative
FROM tableA as t1
The query works as expected, and returns in this particular example for each row a count of positive and negative excesses (range + / - 10) given the defined time window (+ 1000 [milliseconds]).
However, I will have to run such queries for tables with several million (perhaps even 100+ million) entries, and even with about 500k rows, the query takes a looooooong time to complete. Furthermore, whereas the time frame remains always the same within a given query [but the window size can change from query to query], in some instances I will have to use maybe 10 additional conditions similar to the positive / negative excesses in the same query.
Thus, I am looking for ways to improve the above query primarily to achieve better performance considering primarily the size of the envisaged dataset, and secondarily with more conditions in mind.
My concrete questions:
How can I reuse the common portion of the subquery to ensure that it's not executed twice (or several times), i.e. how can I reuse this within the query?
(SELECT COUNT(*) FROM tableA t2
WHERE t2.sys_timestamp > t1.sys_timestamp
AND t2.sys_timestamp <= t1.sys_timestamp + 1000)
Is there some performance advantage in turning the sys_timestamp field which is currently numeric, into a timestamp field, and attempt using any of the PostgreSQL Windows functions? (Unfortunately I don't have enough experience with this at all.)
Are there some clever ways to rewrite the query aside from reusing the (partial) subquery that materially increases the performance for large datasets?
Is it perhaps even faster for these types of queries to run them outside of the database using something like Java, Scala, Python etc. ?
How can I reuse the common portion of the subquery ...?
Use conditional aggregates in a single LATERAL subquery:
SELECT t1.*, t2.positive, t2.negative
FROM tableA t1
CROSS JOIN LATERAL (
SELECT COUNT(*) FILTER (WHERE t2.event_count >= t1.event_count + 10) AS positive
, COUNT(*) FILTER (WHERE t2.event_count <= t1.event_count - 10) AS negative
FROM tableA t2
WHERE t2.sys_timestamp > t1.sys_timestamp
AND t2.sys_timestamp <= t1.sys_timestamp + 1000
) t2;
It can be a CROSS JOIN because the subquery always returns a row. See:
JOIN (SELECT ... ) ue ON 1=1?
What is the difference between LATERAL JOIN and a subquery in PostgreSQL?
Use conditional aggregates with the FILTER clause to base multiple aggregates on the same time frame. See:
Aggregate columns with additional (distinct) filters
event_count should probably be integer or bigint. See:
PostgreSQL using UUID vs Text as primary key
Is there any difference in saving same value in different integer types?
sys_timestamp should probably be timestamp or timestamptz. See:
Ignoring time zones altogether in Rails and PostgreSQL
An index on (sys_timestamp) is minimum requirement for this. A multicolumn index on (sys_timestamp, event_count) typically helps some more. If the table is vacuumed enough, you get index-only scans from it.
Depending on exact data distribution (most importantly how much time frames overlap) and other db characteristics, a tailored procedural solution may be faster, yet. Can be done in any client-side language. But a server-side PL/pgsql solution is superior because it saves all the round trips to the DB server and type conversions etc. See:
Window Functions or Common Table Expressions: count previous rows within range
What are the pros and cons of performing calculations in sql vs. in your application
You have the right idea.
The way to write statements you can reuse in a query is "with" statements (AKA subquery factoring). The "with" statement runs once as a subquery of the main query and can be reused by subsequent subqueries or the final query.
The first step includes creating parent-child detail rows - table multiplied by itself and filtered down by the timestamp.
Then the next step is to reuse that same detail query for everything else.
Assuming that event_count is a primary index or you have a compound index on event_count and sys_timestamp, this would look like:
with baseQuery as
(
SELECT distinct t1.event_count as startEventCount, t1.event_count+10 as pEndEventCount
,t1.eventCount-10 as nEndEventCount, t2.event_count as t2EventCount
FROM tableA t1, tableA t2
where t2.sys_timestamp between t1.sys_timestamp AND t1.sys_timestamp + 1000
), posSummary as
(
select bq.startEventCount, count(*) as positive
from baseQuery bq
where t2EventCount between bq.startEventCount and bq.pEndEventCount
group by bq.startEventCount
), negSummary as
(
select bq.startEventCount, count(*) as negative
from baseQuery bq
where t2EventCount between bq.startEventCount and bq.nEndEventCount
group by bq.startEventCount
)
select t1.*, ps.positive, nv.negative
from tableA t1
inner join posSummary ps on t1.event_count=ps.startEventCount
inner join negSummary ns on t1.event_count=ns.startEventCount
Notes:
The distinct for baseQuery may not be necessary based on your actual keys.
The final join is done with tableA but could also use a summary of baseQuery as a separate "with" statement which already ran once. Seemed unnecessary.
You can play around to see what works.
There are other ways of course but this best illustrates how and where things could be improved.
With statements are used in multi-dimensional data warehouse queries because when you have so much data to join with so many tables(dimensions and facts), a strategy of isolating the queries helps understand where indexes are needed and perhaps how to minimize the rows the query needs to deal with further down the line to completion.
For example, it should be obvious that if you can minimize the rows returned in baseQuery or make it run faster (check explain plans), your query improves overall.

Trying to understand the difference of behavior between two inner join queries

I am trying to optimize a query that uses an inner join, and I am puzzled by the difference of performance between two very similar queries.
I hope to shed some light on this.
The tables look like this:
Aggregates:
+-recid(key)-+-avg---+
+------------+-------+
History:
+-recid(key)-+-value-+
+------------+-------+
The aim is to get, for a given key (let's assume 1234), avg and value.
I have tried two queries who seem very similar to me:
SELECT a.avg, b.value FROM aggregates a, history b
WHERE a.recid = b.recid
AND a.recid = 1234
Takes 5 seconds to run
But,
SELECT a.avg, b.value FROM aggregates a, history b
WHERE a.recid = 1234
AND b.recid = 1234
runs in less than a second.
Those two queries give the very same result. I would like to understand the huge difference in performance (the end game being a better understanding, to achieve a better performance for this query!)
First, learn to use proper explicit JOIN syntax:
SELECT a.avg, h.value
FROM aggregates a JOIN
history h
ON a.recid = h.recid
WHERE a.recid = 1234;
This doesn't affect performance, but it is the correct, modern syntax.
Assuming you have indexes on aggregates(recid) and history(recid), then the two versions should have very similar execution plans in almost any database I can think of. Those two indexes would be recommended for queries like this.
One possibility is cold versus warm cache. The first time you run a query, the data needs to be loaded into memory. That can take longer. For proper timing, you need to take this into account.
Finally, if you really want to understand the difference, then you need to look at the execution plan. Most databases provide a simple way to "explain" how the query is run.
Not sure absolutely but it could be that your second query execution plan is already cached and thus DB optimizier didn't needed to bring one. BTW, your first query should be changes as below to use ANSI style JOIN syntax
SELECT a.avg, b.value FROM aggregates a
JOIN history b ON a.recid = b.recid
WHERE a.recid = 1234
The second query might be performing a cross join then filtering on the results though it would have to be a very old version of Oracle to be that dumb. But you need to look at the query plan to find out. If they consistently exhibit different performance then I guarantee the query plans will be different.

Small vs Large and Large vs Small sql joins [duplicate]

I was just tidying up some sql when I came across this query:
SELECT
jm.IMEI ,
jm.MaxSpeedKM ,
jm.MaxAccel ,
jm.MaxDeccel ,
jm.JourneyMaxLeft ,
jm.JourneyMaxRight ,
jm.DistanceKM ,
jm.IdleTimeSeconds ,
jm.WebUserJourneyId ,
jm.lifetime_odo_metres ,
jm.[Descriptor]
FROM dbo.Reporting_WebUsers AS wu WITH (NOLOCK)
INNER JOIN dbo.Reporting_JourneyMaster90 AS jm WITH (NOLOCK) ON wu.WebUsersId = jm.WebUsersId
INNER JOIN dbo.Reporting_Journeys AS j WITH (NOLOCK) ON jm.WebUserJourneyId = j.WebUserJourneyId
WHERE ( wu.isActive = 1 )
AND ( j.JourneyDuration > 2 )
AND ( j.JourneyDuration < 1000 )
AND ( j.JourneyDistance > 0 )
My question is does it make any performance difference the order of the joins as for the above query I would have done
FROM dbo.Reporting_JourneyMaster90 AS jm
and then joined the other 2 tables to that one
Join order in SQL2008R2 server does unquestionably affect query performance, particularly in queries where there are a large number of table joins with where clauses applied against multiple tables.
Although the join order is changed in optimisation, the optimiser does't try all possible join orders. It stops when it finds what it considers a workable solution as the very act of optimisation uses precious resources.
We have seen queries that were performing like dogs (1min + execution time) come down to sub second performance just by changing the order of the join expressions. Please note however that these are queries with 12 to 20 joins and where clauses on several of the tables.
The trick is to set your order to help the query optimiser figure out what makes sense. You can use Force Order but that can be too rigid. Try to make sure that your join order starts with the tables where the will reduce data most through where clauses.
No, the JOIN by order is changed during optimization.
The only caveat is the Option FORCE ORDER which will force joins to happen in the exact order you have them specified.
I have a clear example of inner join affecting performance. It is a simple join between two tables. One had 50+ million records, the other has 2,000. If I select from the smaller table and join the larger it takes 5+ minutes.
If I select from the larger table and join the smaller it takes 2 min 30 seconds.
This is with SQL Server 2012.
To me this is counter intuitive since I am using the largest dataset for the initial query.
Usually not. I'm not 100% this applies verbatim to Sql-Server, but in Postgres the query planner reserves the right to reorder the inner joins as it sees fit. The exception is when you reach a threshold beyond which it's too expensive to investigate changing their order.
JOIN order doesn't matter, the query engine will reorganize their order based on statistics for indexes and other stuff.
For test do the following:
select show actual execution plan and run first query
change JOIN order and now run the query again
compare execution plans
They should be identical as the query engine will reorganize them according to other factors.
As commented on other asnwer, you could use OPTION (FORCE ORDER) to use exactly the order you want but maybe it would not be the most efficient one.
AS a general rule of thumb, JOIN order should be with table of least records on top, and most records last, as some DBMS engines the order can make a difference, as well as if the FORCE ORDER command was used to help limit the results.
Wrong. SQL Server 2005 it definitely matters since you are limiting the dataset from the beginning of the FROM clause. If you start with 2000 records instead of 2 million it makes your query faster.

Does Sql JOIN order affect performance?

I was just tidying up some sql when I came across this query:
SELECT
jm.IMEI ,
jm.MaxSpeedKM ,
jm.MaxAccel ,
jm.MaxDeccel ,
jm.JourneyMaxLeft ,
jm.JourneyMaxRight ,
jm.DistanceKM ,
jm.IdleTimeSeconds ,
jm.WebUserJourneyId ,
jm.lifetime_odo_metres ,
jm.[Descriptor]
FROM dbo.Reporting_WebUsers AS wu WITH (NOLOCK)
INNER JOIN dbo.Reporting_JourneyMaster90 AS jm WITH (NOLOCK) ON wu.WebUsersId = jm.WebUsersId
INNER JOIN dbo.Reporting_Journeys AS j WITH (NOLOCK) ON jm.WebUserJourneyId = j.WebUserJourneyId
WHERE ( wu.isActive = 1 )
AND ( j.JourneyDuration > 2 )
AND ( j.JourneyDuration < 1000 )
AND ( j.JourneyDistance > 0 )
My question is does it make any performance difference the order of the joins as for the above query I would have done
FROM dbo.Reporting_JourneyMaster90 AS jm
and then joined the other 2 tables to that one
Join order in SQL2008R2 server does unquestionably affect query performance, particularly in queries where there are a large number of table joins with where clauses applied against multiple tables.
Although the join order is changed in optimisation, the optimiser does't try all possible join orders. It stops when it finds what it considers a workable solution as the very act of optimisation uses precious resources.
We have seen queries that were performing like dogs (1min + execution time) come down to sub second performance just by changing the order of the join expressions. Please note however that these are queries with 12 to 20 joins and where clauses on several of the tables.
The trick is to set your order to help the query optimiser figure out what makes sense. You can use Force Order but that can be too rigid. Try to make sure that your join order starts with the tables where the will reduce data most through where clauses.
No, the JOIN by order is changed during optimization.
The only caveat is the Option FORCE ORDER which will force joins to happen in the exact order you have them specified.
I have a clear example of inner join affecting performance. It is a simple join between two tables. One had 50+ million records, the other has 2,000. If I select from the smaller table and join the larger it takes 5+ minutes.
If I select from the larger table and join the smaller it takes 2 min 30 seconds.
This is with SQL Server 2012.
To me this is counter intuitive since I am using the largest dataset for the initial query.
Usually not. I'm not 100% this applies verbatim to Sql-Server, but in Postgres the query planner reserves the right to reorder the inner joins as it sees fit. The exception is when you reach a threshold beyond which it's too expensive to investigate changing their order.
JOIN order doesn't matter, the query engine will reorganize their order based on statistics for indexes and other stuff.
For test do the following:
select show actual execution plan and run first query
change JOIN order and now run the query again
compare execution plans
They should be identical as the query engine will reorganize them according to other factors.
As commented on other asnwer, you could use OPTION (FORCE ORDER) to use exactly the order you want but maybe it would not be the most efficient one.
AS a general rule of thumb, JOIN order should be with table of least records on top, and most records last, as some DBMS engines the order can make a difference, as well as if the FORCE ORDER command was used to help limit the results.
Wrong. SQL Server 2005 it definitely matters since you are limiting the dataset from the beginning of the FROM clause. If you start with 2000 records instead of 2 million it makes your query faster.

Aggregating two selects with a group by in SQL is really slow

I am currently working with a query in in MSSQL that looks like:
SELECT
...
FROM
(SELECT
...
)T1
JOIN
(SELECT
...
)T2
GROUP BY
...
The inner selects are relatively fast, but the outer select aggregates the inner selects and takes an incredibly long time to execute, often timing out. Removing the group by makes it run somewhat faster and changing the join to a LEFT OUTER JOIN speeds things up a bit as well.
Why would doing a group by on a select which aggregates two inner selects cause the query to run so slow? Why does an INNER JOIN run slower than a LEFT OUTER JOIN? What can I do to troubleshoot this further?
EDIT: What makes this even more perplexing is the two inner queries are date limited and the overall query only runs slow when looking at date ranges between the start of July and any other day in July, but if the date ranges are anytime before the the July 1 and Today then it runs fine.
Without some more detail of your query its impossible to offer any hints as to what may speed your query up. A possible guess is the two inner queries are blocking access to any indexes which might have been used to perform the join resulting in large scans but there are probably many other possible reasons.
To check where the time is used in the query check the execution plan, there is a detailed explanation here
http://www.sql-server-performance.com/tips/query_execution_plan_analysis_p1.aspx
The basic run down is run the query, and display the execution plan, then look for any large percentages - they are what is slowing your query down.
Try rewriting your query without the nested SELECTs, which are rarely necessary. When using nested SELECTs - except for trivial cases - the inner SELECT resultsets are not indexed, which makes joining them to anything slow.
As Tetraneutron said, post details of your query -- we may help you rewrite it in a straight-through way.
Have you given a join predicate? Ie join table A ON table.ColA = table.ColB. If you don't give a predicate then SQL may be forced to use nested loops, so if you have a lot of rows in that range it would explain a query slow down.
Have a look at the plan in the SQL studio if you have MS Sql Server to play with.
After your t2 statement add a join condition on t1.joinfield = t2.joinfield
The issue was with fragmented data. After the data was defragmented the query started running within reasonable time constraints.
JOIN = Cartesian Product. All columns from both tables will be joined in numerous permutations. It is slow because the inner queries are querying each of the separate tables, but once they hit the join, it becomes a Cartesian product and is more difficult to manage. This would occur at the outer select statement.
Have a look at INNER JOINs as Tetraneutron recommended.