sqlite text as primary key vs autoincrement integers - sql

I'm currently debating between two strategies to using a text column as a key.
The first one is to simply use the text column itself as a key, as such:
create table a(
key_a text primary key,
)
create table b(
key_b text primary key,
)
create table c(
key_a text,
key_b text,
foreign key("key_a") references a("key_a"),
foreign key("key_b") references b("key_b")
)
I'm concerned that this would result in every key being duplicated, once in a and b and another in c, since text isn't stored inline.
My second approach is to use an autoincrement id on the first two tables as a primary key, and use those ids on table c to refer to them, as such:
create table a(
id_a integer,
key_a text unique,
primary key("id_a" autoincrement)
)
create table b(
id_b integer,
key_b text unique,
primary key("id_a" autoincrement)
)
create table c(
id_a integer,
id_b integer,
foreign key("id_a") references a("id_a"),
foreign key("id_b") references b("id_b")
)
Am I right to be concerned about text duplication in the first case? Or does sqlite somehow intern these and just use an id for both, akin to what the second strategy does?

SQLite does not automatically compress text. So the answer to your question is "no".
Should you use text or an auto-incrementing id as the primary key? This can be a complex question. But happily, the answer is that it doesn't make much difference. That said, there are some considerations:
Integers are of fixed length. In general, fix length keys are slightly more efficient in B-tree indexes than variable length keys.
If the strings are short (like 1 or 2 or 3 characters), then they may be shorter -- or no longer -- than integers.
If you change the string (say, if it is originally misspelled), then using an "artificial" primary key makes this easy: just change the value in one table. Using the string itself as a key can result in lots of updates to lots of tables.

Am I right to be concerned about text duplication in the first case?
Or does sqlite somehow intern these and just use an id for both, akin
to what the second strategy does?
Yes, you are right to be concerned. The text will be duplicated.
Also, even if you did not define an integer primary key in your 1st approach, there is one.
From Rowid Tables:
The PRIMARY KEY of a rowid table (if there is one) is usually not the
true primary key for the table, in the sense that it is not the unique
key used by the underlying B-tree storage engine. The exception to
this rule is when the rowid table declares an INTEGER PRIMARY KEY. In
the exception, the INTEGER PRIMARY KEY becomes an alias for the rowid.
The true primary key for a rowid table (the value that is used as the
key to look up rows in the underlying B-tree storage engine) is the
rowid.
In your 2nd approach actually you are not creating a new column in each of the tables a and b by defining an integer primary key.
What you are doing is aliasing the existing rowid column:
id_a becomes the alias of rowid of the table a
id_b becomes the alias of rowid of the table b.
So, defining these integer primary keys is not more expensive in terms of space in the parent tables.
Although with your 1st approach you can avoid explicit updates in the child tables when you update a value in the parent tables by defining the foreign keys with ON UPDATE CASCADE, your 2nd approach is what I would suggest.
An integer primary key with a value assigned to it by the system and you don't even have to know or worry about it is common practice.
All you have to do is use that primary key and its corresponding foreign keys in the queries that you create to access the parent tables when you want to fetch from them the text values.

For performance (also it is a good db practice) you should stick to numeric/int value for the Primary Key.
As for the second approach, I'm not getting the concept you are after. Could you elaborate more on this?

Related

Sqlite - composite PK with two auto-incrementing values [duplicate]

I have a composite primary key {shop_id, product_id} for SQLite
Now, I want an auto-increment value for product_id which resets to 1 if shop id is changed. Basically, I want auto-generated composite key
e.g.
Shop ID Product Id
1 1
1 2
1 3
2 1
2 2
3 1
Can I achieve this with auto-increment? How?
Normal Sqlite tables are B*-trees that use a 64-bit integer as their key. This is called the rowid. When inserting a row, if a value is not explicitly given for this, one is generated. An INTEGER PRIMARY KEY column acts as an alias for this rowid. The AUTOINCREMENT keyword, which can only be used on said INTEGER PRIMARY KEY column, contrary to the name, merely alters how said rowid is calculated - if you leave out a value, one will be created whether that keyword is present or not, because it's really the rowid and must have a number. Details here. (rowid values are generally generated in increasing, but not necessarily sequential, order, and shouldn't be treated like a row number or anything like that, btw).
Any primary key other than a single INTEGER column is treated as a unique index, while the rowid remains the true primary key (Unless it's a WITHOUT ROWID table), and is not autogenerated. So, no, you can't (easily) do what you want.
I would probably work out a database design where you have a table of shops, a table of products, each with their own ids, and a junction table that establishes a many-to-many relation between the two. This keeps the product id the same between stores, which is probably going to be less confusing to people - I wouldn't expect the same item to have a different SKU in two different stores of the same chain, for instance.
Something like:
CREATE TABLE stores(store_id INTEGER PRIMARY KEY
, address TEXT
-- etc
);
CREATE TABLE product(prod_id INTEGER PRIMARY KEY
, name TEXT
-- etc
);
CREATE TABLE inventory(store_id INTEGER REFERENCES stores(store_id)
, prod_id INTEGER REFERENCES product(prod_id)
, PRIMARY KEY(store_id, prod_id)) WITHOUT ROWID;

What are the drawbacks of foreign key constraints that reference non-primary-key columns?

I want to know if there are any drawbacks between a referential relation that uses primary key columns versus unique key columns (in SQL Server a foreign key constraint can only reference columns in a primary key or unique index).
Are there differences in how queries are parsed, in specific DB systems (e.g. Microsoft SQL Server 2005), based on whether a foreign key references a primary key versus a unique key?
Note that I'm not asking about the differences between using columns of different datatypes for referential integrity, joins, etc.
Purely as an example, imagine a DB in which there is a 'lookup table' dbo.Offices:
CREATE TABLE dbo.Offices (
ID int NOT NULL IDENTITY(1,1) CONSTRAINT PK_Codes PRIMARY KEY,
Code varchar(50) NOT NULL CONSTRAINT UQ_Codes_Code UNIQUE
);
There is also a table dbo.Patients:
CREATE TABLE dbo.Patients (
ID int NOT NULL IDENTITY(1,1) CONSTRAINT PK_Patients PRIMARY KEY,
OfficeCode varchar(50) NOT NULL,
...
CONSTRAINT FK_Patients_Offices FOREIGN KEY ( OfficeCode )
REFERENCES dbo.Offices ( Code )
);
What are the drawbacks of the table dbo.Patients and its constraint FK_Patients_Offices as in the T-SQL code above, versus the following alternate version:
CREATE TABLE dbo.Patients (
ID int NOT NULL IDENTITY(1,1) CONSTRAINT PK_Patients PRIMARY KEY,
OfficeID int NOT NULL,
...
CONSTRAINT FK_Patients_Offices FOREIGN KEY ( OfficeID )
REFERENCES dbo.Offices ( ID )
);
Obviously, for the second version of dbo.Patients, the values in the column OfficeID don't need to be updated if changes are made to values in the Code column of dbo.Offices.
Also (obvious) is that using the Code column of dbo.Offices for foreign key references largely defeats the purpose of the surrogate key column ID – this is purely an artifact of the example. [Is there a better example of a table for which foreign key references might reasonably use a non-primary key?]
There is no drawback.
However..
Why do you have an ID column in the Offices table? A surrogate key is used to reduce space and improve performance over, say, a varchar column when used in other tables as a foreign key.
If you are going to use the varchar column for foreign keys, then you don't need a surrogate key.
Most benefits of having the IDENTITY are squandered by using the Code column for FKs.
Why do you think there would be any drawbacks??
Quite the contrary! It's good to see you're enforcing referential integrity as everyone should! No drawbacks - just good practice to do this!
I don't see any functional difference or any problems/issues with referencing a unique index vs. referencing a primary key.
Update: since you're not interested in performance- or datatype-related issues, this last paragraph probably doesn't add any additional value.
The only minor thing I see is that your OfficeCode is both a VARCHAR and thus you might run into issues with collation and/or casing (upper-/lower-case, depending on your collation), and JOIN's on a fairly large (up to 50 bytes) and varying length field are probably not quite as efficient as JOIN conditions based on a small, fixed-length INT column.
A primary key is a candidate key and is not fundamentally different from any other candidate key. It is a widely observed convention that one candidate key per table is designated as a "primary" one and that this is the key used for all foreign key references.
A possible advantage of singling out one key in this way is that you make the use of the key clearer to users of the database: they know which key is the one being referenced without looking in every referencing table. This is entirely optional however. If you find it convenient to do otherwise or if requirements dictate that some other key should be referenced by a foreign key then I suggest you do that.
Assuming you add an index on the code column (which you definitely should as soon as you reference to it), is there anything to be said against getting rid of the entire ID column and using the code column as PK as well?
The most significant one I can think of is that, if they ever renumber the offices, you'll either lose integrity or need to update both tables. However likely that might be.
The performance consequences are vanishingly small unless you have irrationally large office codes, and even then less than you probably expect.
It's not considered a significant determinant of database design for most people.
Big flaw
We were able to enter some value into dbo.Patients.OfficeID that is not there in dbo.Offices.ID
There is no meaning to say that there is a reference.

sqlite: how can I add an autoincrementing id to an existing table?

I would like to add an autoincrementing integer field called uid to an existing table assoc, but it doesn't look like I can do that unless it's a primary key.
I have fields local_id and remote_id which are the existing primary key pair, and I do that so that I can INSERT OR IGNORE INTO assoc so that I don't get duplicate primary keys, but if I have a pair of columns as a primary key, I can't seem to use them as an update (see other SO question).
Could anyone suggest how to restructure the table (and implement that restructuring using ALTER TABLE) so that I can get the behavior I need:
a single autoincrementing key, so I can use that for UPDATEs
a pair of fields local_id and remote_id so that the pair (local_id, remote_id) remains unique in the table
In this case, you could drop the primary key on your existing columns, create the new primary key integer autoincrementing column, then create a UNIQUE index on the other two columns.
Aha, I don't need to -- there's a builtin rowid column.

mysql: difference between primary key and unique index? [duplicate]

At work we have a big database with unique indexes instead of primary keys and all works fine.
I'm designing new database for a new project and I have a dilemma:
In DB theory, primary key is fundamental element, that's OK, but in REAL projects what are advantages and disadvantages of both?
What do you use in projects?
EDIT: ...and what about primary keys and replication on MS SQL server?
What is a unique index?
A unique index on a column is an index on that column that also enforces the constraint that you cannot have two equal values in that column in two different rows. Example:
CREATE TABLE table1 (foo int, bar int);
CREATE UNIQUE INDEX ux_table1_foo ON table1(foo); -- Create unique index on foo.
INSERT INTO table1 (foo, bar) VALUES (1, 2); -- OK
INSERT INTO table1 (foo, bar) VALUES (2, 2); -- OK
INSERT INTO table1 (foo, bar) VALUES (3, 1); -- OK
INSERT INTO table1 (foo, bar) VALUES (1, 4); -- Fails!
Duplicate entry '1' for key 'ux_table1_foo'
The last insert fails because it violates the unique index on column foo when it tries to insert the value 1 into this column for a second time.
In MySQL a unique constraint allows multiple NULLs.
It is possible to make a unique index on mutiple columns.
Primary key versus unique index
Things that are the same:
A primary key implies a unique index.
Things that are different:
A primary key also implies NOT NULL, but a unique index can be nullable.
There can be only one primary key, but there can be multiple unique indexes.
If there is no clustered index defined then the primary key will be the clustered index.
You can see it like this:
A Primary Key IS Unique
A Unique value doesn't have to be the Representaion of the Element
Meaning?; Well a primary key is used to identify the element, if you have a "Person" you would like to have a Personal Identification Number ( SSN or such ) which is Primary to your Person.
On the other hand, the person might have an e-mail which is unique, but doensn't identify the person.
I always have Primary Keys, even in relationship tables ( the mid-table / connection table ) I might have them. Why? Well I like to follow a standard when coding, if the "Person" has an identifier, the Car has an identifier, well, then the Person -> Car should have an identifier as well!
Foreign keys work with unique constraints as well as primary keys. From Books Online:
A FOREIGN KEY constraint does not have
to be linked only to a PRIMARY KEY
constraint in another table; it can
also be defined to reference the
columns of a UNIQUE constraint in
another table
For transactional replication, you need the primary key. From Books Online:
Tables published for transactional
replication must have a primary key.
If a table is in a transactional
replication publication, you cannot
disable any indexes that are
associated with primary key columns.
These indexes are required by
replication. To disable an index, you
must first drop the table from the
publication.
Both answers are for SQL Server 2005.
The choice of when to use a surrogate primary key as opposed to a natural key is tricky. Answers such as, always or never, are rarely useful. I find that it depends on the situation.
As an example, I have the following tables:
CREATE TABLE toll_booths (
id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
...
UNIQUE(name)
)
CREATE TABLE cars (
vin VARCHAR(17) NOT NULL PRIMARY KEY,
license_plate VARCHAR(10) NOT NULL,
...
UNIQUE(license_plate)
)
CREATE TABLE drive_through (
id INTEGER NOT NULL PRIMARY KEY,
toll_booth_id INTEGER NOT NULL REFERENCES toll_booths(id),
vin VARCHAR(17) NOT NULL REFERENCES cars(vin),
at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
amount NUMERIC(10,4) NOT NULL,
...
UNIQUE(toll_booth_id, vin)
)
We have two entity tables (toll_booths and cars) and a transaction table (drive_through). The toll_booth table uses a surrogate key because it has no natural attribute that is not guaranteed to change (the name can easily be changed). The cars table uses a natural primary key because it has a non-changing unique identifier (vin). The drive_through transaction table uses a surrogate key for easy identification, but also has a unique constraint on the attributes that are guaranteed to be unique at the time the record is inserted.
http://database-programmer.blogspot.com has some great articles on this particular subject.
There are no disadvantages of primary keys.
To add just some information to #MrWiggles and #Peter Parker answers, when table doesn't have primary key for example you won't be able to edit data in some applications (they will end up saying sth like cannot edit / delete data without primary key). Postgresql allows multiple NULL values to be in UNIQUE column, PRIMARY KEY doesn't allow NULLs. Also some ORM that generate code may have some problems with tables without primary keys.
UPDATE:
As far as I know it is not possible to replicate tables without primary keys in MSSQL, at least without problems (details).
If something is a primary key, depending on your DB engine, the entire table gets sorted by the primary key. This means that lookups are much faster on the primary key because it doesn't have to do any dereferencing as it has to do with any other kind of index. Besides that, it's just theory.
In addition to what the other answers have said, some databases and systems may require a primary to be present. One situation comes to mind; when using enterprise replication with Informix a PK must be present for a table to participate in replication.
As long as you do not allow NULL for a value, they should be handled the same, but the value NULL is handled differently on databases(AFAIK MS-SQL do not allow more than one(1) NULL value, mySQL and Oracle allow this, if a column is UNIQUE)
So you must define this column NOT NULL UNIQUE INDEX
There is no such thing as a primary key in relational data theory, so your question has to be answered on the practical level.
Unique indexes are not part of the SQL standard. The particular implementation of a DBMS will determine what are the consequences of declaring a unique index.
In Oracle, declaring a primary key will result in a unique index being created on your behalf, so the question is almost moot. I can't tell you about other DBMS products.
I favor declaring a primary key. This has the effect of forbidding NULLs in the key column(s) as well as forbidding duplicates. I also favor declaring REFERENCES constraints to enforce entity integrity. In many cases, declaring an index on the coulmn(s) of a foreign key will speed up joins. This kind of index should in general not be unique.
There are some disadvantages of CLUSTERED INDEXES vs UNIQUE INDEXES.
As already stated, a CLUSTERED INDEX physically orders the data in the table.
This mean that when you have a lot if inserts or deletes on a table containing a clustered index, everytime (well, almost, depending on your fill factor) you change the data, the physical table needs to be updated to stay sorted.
In relative small tables, this is fine, but when getting to tables that have GB's worth of data, and insertrs/deletes affect the sorting, you will run into problems.
I almost never create a table without a numeric primary key. If there is also a natural key that should be unique, I also put a unique index on it. Joins are faster on integers than multicolumn natural keys, data only needs to change in one place (natural keys tend to need to be updated which is a bad thing when it is in primary key - foreign key relationships). If you are going to need replication use a GUID instead of an integer, but for the most part I prefer a key that is user readable especially if they need to see it to distinguish between John Smith and John Smith.
The few times I don't create a surrogate key are when I have a joining table that is involved in a many-to-many relationship. In this case I declare both fields as the primary key.
My understanding is that a primary key and a unique index with a not‑null constraint, are the same (*); and I suppose one choose one or the other depending on what the specification explicitly states or implies (a matter of what you want to express and explicitly enforce). If it requires uniqueness and not‑null, then make it a primary key. If it just happens all parts of a unique index are not‑null without any requirement for that, then just make it a unique index.
The sole remaining difference is, you may have multiple not‑null unique indexes, while you can't have multiple primary keys.
(*) Excepting a practical difference: a primary key can be the default unique key for some operations, like defining a foreign key. Ex. if one define a foreign key referencing a table and does not provide the column name, if the referenced table has a primary key, then the primary key will be the referenced column. Otherwise, the the referenced column will have to be named explicitly.
Others here have mentioned DB replication, but I don't know about it.
Unique Index can have one NULL value. It creates NON-CLUSTERED INDEX.
Primary Key cannot contain NULL value. It creates CLUSTERED INDEX.
In MSSQL, Primary keys should be monotonically increasing for best performance on the clustered index. Therefore an integer with identity insert is better than any natural key that might not be monotonically increasing.
If it were up to me...
You need to satisfy the requirements of the database and of your applications.
Adding an auto-incrementing integer or long id column to every table to serve as the primary key takes care of the database requirements.
You would then add at least one other unique index to the table for use by your application. This would be the index on employee_id, or account_id, or customer_id, etc. If possible, this index should not be a composite index.
I would favor indices on several fields individually over composite indices. The database will use the single field indices whenever the where clause includes those fields, but it will only use a composite when you provide the fields in exactly the correct order - meaning it can't use the second field in a composite index unless you provide both the first and second in your where clause.
I am all for using calculated or Function type indices - and would recommend using them over composite indices. It makes it very easy to use the function index by using the same function in your where clause.
This takes care of your application requirements.
It is highly likely that other non-primary indices are actually mappings of that indexes key value to a primary key value, not rowid()'s. This allows for physical sorting operations and deletes to occur without having to recreate these indices.

Primary key or Unique index?

At work we have a big database with unique indexes instead of primary keys and all works fine.
I'm designing new database for a new project and I have a dilemma:
In DB theory, primary key is fundamental element, that's OK, but in REAL projects what are advantages and disadvantages of both?
What do you use in projects?
EDIT: ...and what about primary keys and replication on MS SQL server?
What is a unique index?
A unique index on a column is an index on that column that also enforces the constraint that you cannot have two equal values in that column in two different rows. Example:
CREATE TABLE table1 (foo int, bar int);
CREATE UNIQUE INDEX ux_table1_foo ON table1(foo); -- Create unique index on foo.
INSERT INTO table1 (foo, bar) VALUES (1, 2); -- OK
INSERT INTO table1 (foo, bar) VALUES (2, 2); -- OK
INSERT INTO table1 (foo, bar) VALUES (3, 1); -- OK
INSERT INTO table1 (foo, bar) VALUES (1, 4); -- Fails!
Duplicate entry '1' for key 'ux_table1_foo'
The last insert fails because it violates the unique index on column foo when it tries to insert the value 1 into this column for a second time.
In MySQL a unique constraint allows multiple NULLs.
It is possible to make a unique index on mutiple columns.
Primary key versus unique index
Things that are the same:
A primary key implies a unique index.
Things that are different:
A primary key also implies NOT NULL, but a unique index can be nullable.
There can be only one primary key, but there can be multiple unique indexes.
If there is no clustered index defined then the primary key will be the clustered index.
You can see it like this:
A Primary Key IS Unique
A Unique value doesn't have to be the Representaion of the Element
Meaning?; Well a primary key is used to identify the element, if you have a "Person" you would like to have a Personal Identification Number ( SSN or such ) which is Primary to your Person.
On the other hand, the person might have an e-mail which is unique, but doensn't identify the person.
I always have Primary Keys, even in relationship tables ( the mid-table / connection table ) I might have them. Why? Well I like to follow a standard when coding, if the "Person" has an identifier, the Car has an identifier, well, then the Person -> Car should have an identifier as well!
Foreign keys work with unique constraints as well as primary keys. From Books Online:
A FOREIGN KEY constraint does not have
to be linked only to a PRIMARY KEY
constraint in another table; it can
also be defined to reference the
columns of a UNIQUE constraint in
another table
For transactional replication, you need the primary key. From Books Online:
Tables published for transactional
replication must have a primary key.
If a table is in a transactional
replication publication, you cannot
disable any indexes that are
associated with primary key columns.
These indexes are required by
replication. To disable an index, you
must first drop the table from the
publication.
Both answers are for SQL Server 2005.
The choice of when to use a surrogate primary key as opposed to a natural key is tricky. Answers such as, always or never, are rarely useful. I find that it depends on the situation.
As an example, I have the following tables:
CREATE TABLE toll_booths (
id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
...
UNIQUE(name)
)
CREATE TABLE cars (
vin VARCHAR(17) NOT NULL PRIMARY KEY,
license_plate VARCHAR(10) NOT NULL,
...
UNIQUE(license_plate)
)
CREATE TABLE drive_through (
id INTEGER NOT NULL PRIMARY KEY,
toll_booth_id INTEGER NOT NULL REFERENCES toll_booths(id),
vin VARCHAR(17) NOT NULL REFERENCES cars(vin),
at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
amount NUMERIC(10,4) NOT NULL,
...
UNIQUE(toll_booth_id, vin)
)
We have two entity tables (toll_booths and cars) and a transaction table (drive_through). The toll_booth table uses a surrogate key because it has no natural attribute that is not guaranteed to change (the name can easily be changed). The cars table uses a natural primary key because it has a non-changing unique identifier (vin). The drive_through transaction table uses a surrogate key for easy identification, but also has a unique constraint on the attributes that are guaranteed to be unique at the time the record is inserted.
http://database-programmer.blogspot.com has some great articles on this particular subject.
There are no disadvantages of primary keys.
To add just some information to #MrWiggles and #Peter Parker answers, when table doesn't have primary key for example you won't be able to edit data in some applications (they will end up saying sth like cannot edit / delete data without primary key). Postgresql allows multiple NULL values to be in UNIQUE column, PRIMARY KEY doesn't allow NULLs. Also some ORM that generate code may have some problems with tables without primary keys.
UPDATE:
As far as I know it is not possible to replicate tables without primary keys in MSSQL, at least without problems (details).
If something is a primary key, depending on your DB engine, the entire table gets sorted by the primary key. This means that lookups are much faster on the primary key because it doesn't have to do any dereferencing as it has to do with any other kind of index. Besides that, it's just theory.
In addition to what the other answers have said, some databases and systems may require a primary to be present. One situation comes to mind; when using enterprise replication with Informix a PK must be present for a table to participate in replication.
As long as you do not allow NULL for a value, they should be handled the same, but the value NULL is handled differently on databases(AFAIK MS-SQL do not allow more than one(1) NULL value, mySQL and Oracle allow this, if a column is UNIQUE)
So you must define this column NOT NULL UNIQUE INDEX
There is no such thing as a primary key in relational data theory, so your question has to be answered on the practical level.
Unique indexes are not part of the SQL standard. The particular implementation of a DBMS will determine what are the consequences of declaring a unique index.
In Oracle, declaring a primary key will result in a unique index being created on your behalf, so the question is almost moot. I can't tell you about other DBMS products.
I favor declaring a primary key. This has the effect of forbidding NULLs in the key column(s) as well as forbidding duplicates. I also favor declaring REFERENCES constraints to enforce entity integrity. In many cases, declaring an index on the coulmn(s) of a foreign key will speed up joins. This kind of index should in general not be unique.
There are some disadvantages of CLUSTERED INDEXES vs UNIQUE INDEXES.
As already stated, a CLUSTERED INDEX physically orders the data in the table.
This mean that when you have a lot if inserts or deletes on a table containing a clustered index, everytime (well, almost, depending on your fill factor) you change the data, the physical table needs to be updated to stay sorted.
In relative small tables, this is fine, but when getting to tables that have GB's worth of data, and insertrs/deletes affect the sorting, you will run into problems.
I almost never create a table without a numeric primary key. If there is also a natural key that should be unique, I also put a unique index on it. Joins are faster on integers than multicolumn natural keys, data only needs to change in one place (natural keys tend to need to be updated which is a bad thing when it is in primary key - foreign key relationships). If you are going to need replication use a GUID instead of an integer, but for the most part I prefer a key that is user readable especially if they need to see it to distinguish between John Smith and John Smith.
The few times I don't create a surrogate key are when I have a joining table that is involved in a many-to-many relationship. In this case I declare both fields as the primary key.
My understanding is that a primary key and a unique index with a not‑null constraint, are the same (*); and I suppose one choose one or the other depending on what the specification explicitly states or implies (a matter of what you want to express and explicitly enforce). If it requires uniqueness and not‑null, then make it a primary key. If it just happens all parts of a unique index are not‑null without any requirement for that, then just make it a unique index.
The sole remaining difference is, you may have multiple not‑null unique indexes, while you can't have multiple primary keys.
(*) Excepting a practical difference: a primary key can be the default unique key for some operations, like defining a foreign key. Ex. if one define a foreign key referencing a table and does not provide the column name, if the referenced table has a primary key, then the primary key will be the referenced column. Otherwise, the the referenced column will have to be named explicitly.
Others here have mentioned DB replication, but I don't know about it.
Unique Index can have one NULL value. It creates NON-CLUSTERED INDEX.
Primary Key cannot contain NULL value. It creates CLUSTERED INDEX.
In MSSQL, Primary keys should be monotonically increasing for best performance on the clustered index. Therefore an integer with identity insert is better than any natural key that might not be monotonically increasing.
If it were up to me...
You need to satisfy the requirements of the database and of your applications.
Adding an auto-incrementing integer or long id column to every table to serve as the primary key takes care of the database requirements.
You would then add at least one other unique index to the table for use by your application. This would be the index on employee_id, or account_id, or customer_id, etc. If possible, this index should not be a composite index.
I would favor indices on several fields individually over composite indices. The database will use the single field indices whenever the where clause includes those fields, but it will only use a composite when you provide the fields in exactly the correct order - meaning it can't use the second field in a composite index unless you provide both the first and second in your where clause.
I am all for using calculated or Function type indices - and would recommend using them over composite indices. It makes it very easy to use the function index by using the same function in your where clause.
This takes care of your application requirements.
It is highly likely that other non-primary indices are actually mappings of that indexes key value to a primary key value, not rowid()'s. This allows for physical sorting operations and deletes to occur without having to recreate these indices.