I'm trying to plot a 2MASS image on the same projection as a TESS image. I used to do this with pywcsgrid2, but I can't seem to install it anymore. So I'm trying with Astropy WCSAxes.
Both the TESS image and 2MASS image are retrieved using Astroquery functions (TESScut and SkyView, respectively). I can create a plot of each image individually on its appropriate WCS axes. But when I try to plot the 2MASS image onto an axis with the TESS WCS (either as a contour or an image itself), it shrinks the image down into the lower left corner. Can somebody tell me what I'm doing wrong, or whether something might be off about the WCS.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colors
from astroquery.skyview import SkyView
from astropy.wcs import WCS
import astropy.io.fits as fits
import astropy.units as u
from astropy.coordinates import SkyCoord
from astroquery.mast import Tesscut
test_tic = 113449635
cutout_coord = SkyCoord(113.29538299104,-35.48102008076,unit=u.degree)
dir_ffi = "./temp/"
tess_data = Tesscut.download_cutouts(cutout_coord, size=20, path=dir_ffi)
tess_file = tess_data[2][0]
def extract_wcs(dataheader):
"""
Generate WCS for a TESS or K2 TPF. dataheader is the header of extension #1
"""
w5 = WCS(naxis=2)
w5.wcs.crpix = [dataheader["1CRPX5"],dataheader["2CRPX5"]]
w5.wcs.cdelt = np.array([dataheader["1CDLT5"],dataheader["2CDLT5"]])
w5.wcs.crval = [dataheader["1CRVL5"],dataheader["2CRVL5"]]
w5.wcs.ctype = [dataheader["1CTYP5"],dataheader["2CTYP5"]]
w5.wcs.pc = [[dataheader["11PC5"],dataheader["12PC5"]],
[dataheader["21PC5"],dataheader["22PC5"]]]
return w5
with fits.open(tess_file) as hdu:
# not a coadd, but reducing code for the sake of the MWE
coadd = hdu[1].data["FLUX"][100]
dataheader = hdu[1].header
w3 = extract_wcs(dataheader)
# This works just fine
plt.subplot(projection=w3)
plt.imshow(coadd,origin="lower", norm=colors.LogNorm())
plt.xlabel('RA')
plt.ylabel('Dec')
plt.show()
# Get 2MASS K image
twomass_images = SkyView.get_images(position=cutout_coord, survey=['2MASS-K'],pixels=500)
pix_2mass = twomass_images[0][0].data
hdr_2mass = twomass_images[0][0].header
wcs_2mass = WCS(hdr_2mass)
print(w3)
print(wcs_2mass)
# Try to plot the TESS image in the background, with 2MASS overlaid as a contour
# This yields oversized axes with the image in the lower left corner
ax = plt.subplot(projection=w3)
ax.imshow(coadd,origin="lower", norm=colors.LogNorm(),zorder=-10)
ax.contour(pix_2mass, transform=ax.get_transform(wcs_2mass),
colors='k',zorder=5)
plt.xlabel('RA')
plt.ylabel('Dec')
plt.show()
# Try to plot the 2MASS image in the background, on the TESS WCS
# This yields oversized axes with the image in the lower left corner
ax = plt.subplot(projection=w3)
ax.imshow(pix_2mass, origin="lower", norm=colors.LogNorm(), zorder=-10,
transform=ax.get_transform(wcs_2mass))
plt.xlabel('RA')
plt.ylabel('Dec')
plt.show()
Related
I am trying to show a gif file in google's colab.research. I was able to save the file in the directory with the following path name /content/BrowniamMotion.gif but I don't know how to show this GIF in my notebook to present.
The code to generate the GIF so far, in case someone can manipulate it not to save the GIF but rather to animate it directly into the google colab file was,
# Other Brownian Motion
from math import *
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import matplotlib.animation as animation
fig = plt.figure(figsize=(8,6))
ax = plt.axes(projection='3d')
N=10
#val1 = 500
x=500*np.random.random(N)
y=500*np.random.random(N)
z=500*np.random.random(N)
def frame(w):
ax.clear()
global x,y,z
x=x+np.random.normal(loc=0.0,scale=50.0,size=10)
y=y+np.random.normal(loc=0.0,scale=50.0,size=10)
z=z+np.random.normal(loc=0.0,scale=50.0,size=10)
plt.title("Brownian Motion")
ax.set_xlabel('X(t)')
ax.set_xlim3d(-500.0,500.0)
ax.set_ylabel('Y(t)')
ax.set_ylim3d(-500.0,500.0)
ax.set_zlabel('Z(t)')
ax.set_zlim3d(-500.0,500.0)
plot=ax.scatter
3D(x, y, z, c='r')
return plot
anim = animation.FuncAnimation(fig, frame, frames=100, blit=False, repeat=True)
anim.save('BrowniamMotion.gif', writer = "pillow", fps=10 )
Sorry if this question is badly, stated. I am new to Python and using colab research.
For Colab it is easiest to use 'jshtml' to display matplotlib animation.
You need to set it up with
from matplotlib import rc
rc('animation', html='jshtml')
Then, just type your animation object. It will display itself
anim
Here's a workable colab of your code.
It has a slider where you can run back and forth at any point in time.
Using the same authors git repository seems like we have a solution to embed the plots as GIFs ( Save Matplotlib Animations as GIFs ).
#!apt install ffmpeg
#!brew install imagemagick
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import animation, rc
from IPython.display import HTML, Image # For GIF
rc('animation', html='html5')
np.random.seed(5)
# Set up formatting for the movie files
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
def generateRandomLines(dt, N):
dX = np.sqrt(dt) * np.random.randn(1, N)
X = np.cumsum(dX, axis=1)
dY = np.sqrt(dt) * np.random.randn(1, N)
Y = np.cumsum(dY, axis=1)
lineData = np.vstack((X, Y))
return lineData
# Returns Line2D objects
def updateLines(num, dataLines, lines):
for u, v in zip(lines, dataLines):
u.set_data(v[0:2, :num])
return lines
N = 501 # Number of points
T = 1.0
dt = T/(N-1)
fig, ax = plt.subplots()
data = [generateRandomLines(dt, N)]
ax = plt.axes(xlim=(-2.0, 2.0), ylim=(-2.0, 2.0))
ax.set_xlabel('X(t)')
ax.set_ylabel('Y(t)')
ax.set_title('2D Discretized Brownian Paths')
## Create a list of line2D objects
lines = [ax.plot(dat[0, 0:1], dat[1, 0:1])[0] for dat in data]
## Create the animation object
anim = animation.FuncAnimation(fig, updateLines, N+1, fargs=(data, lines), interval=30, repeat=True, blit=False)
plt.tight_layout()
plt.show()
# Save as GIF
anim.save('animationBrownianMotion2d.gif', writer='pillow', fps=60)
Image(url='animationBrownianMotion2d.gif')
## Uncomment to save the animation
#anim.save('brownian2d_1path.mp4', writer=writer)
Check this link out on using the HTML to get it to work http://louistiao.me/posts/notebooks/embedding-matplotlib-animations-in-jupyter-notebooks/ .
I didn't embed a link but instead imbedded a HTML video that got it to work.
# Other Brownian Motion
from math import *
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import matplotlib.animation as animation
from IPython.display import HTML
fig = plt.figure(figsize=(8,6))
ax = plt.axes(projection='3d')
N=10
val1 = 600
x=val1*np.random.random(N)
y=val1*np.random.random(N)
z=val1*np.random.random(N)
def frame(w):
ax.clear()
global x,y,z
x=x+np.random.normal(loc=0.0,scale=50.0,size=10)
y=y+np.random.normal(loc=0.0,scale=50.0,size=10)
z=z+np.random.normal(loc=0.0,scale=50.0,size=10)
plt.title("Brownian Motion")
ax.set_xlabel('X(t)')
ax.set_xlim3d(-val1,val1)
ax.set_ylabel('Y(t)')
ax.set_ylim3d(-val1,val1)
ax.set_zlabel('Z(t)')
ax.set_zlim3d(-val1,val1)
plot=ax.scatter3D(x, y, z, c='r')
return plot
anim = animation.FuncAnimation(fig, frame, frames=100, blit=False, repeat=True)
anim.save('BrowniamMotion.gif', writer = "pillow", fps=10 )
HTML(anim.to_html5_video())
Essentially all we did hear was add,
from IPython.display import HTML to the premable and then add the line HTML(anim.to_html5_video()). This code then produces a video and saves the gif.
I am trying to plot the surface temperature from a NetCDF file using Cartopy and contourf. The domain of my plot is 30S to 60N and 90.044495E to 89.95552E (so all the way around the Earth centered on 90W). Here is a section of my code:
import numpy as np
import wrf as wrf
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
cart_proj = wrf.get_cartopy(skintemp)
lats, lons = wrf.latlon_coords(skintemp)
ax = plt.axes(projection=cart_proj)
ax.coastlines('50m', linewidth=0.8)
clevels = np.linspace(230,300,8)
cmap = plt.cm.YlOrRd
contours_fill = plt.contourf(wrf.to_np(lons), wrf.to_np(lats), skintemp, cmap=cmap, levels = clevels, transform=ccrs.PlateCarree(),extend="both")
cbar = plt.colorbar(contours_fill, shrink = .65, orientation='horizontal', pad=.05)
plt.show()
skintemp, lats and lons are all 2D arrays with dimensions (454, 1483), ordered (lat,lon), and cart_proj = wrf.projection.MercatorWithLatTS.
When I show the plot, it's distorted and incorrect:
I have determined that the issue has to do with the non-zero central longitude. The problem appears to be when the longitude changes from 179.90082 to -179.85632. lons.values[0,370]=179.90082, so I changed contourf to the following:
contours_fill = plt.contourf(wrf.to_np(lons[:,0:371]), wrf.to_np(lats[:,0:371]), skintemp[:,0:371], cmap=cmap, levels = clevels, transform=ccrs.PlateCarree(),extend="both")
which produces the following correct figure:
And when I change contourf to:
contours_fill = plt.contourf(wrf.to_np(lons[:,371:-1]), wrf.to_np(lats[:,371:-1]), skintemp[:,371:-1], cmap=cmap, levels = clevels, transform=ccrs.PlateCarree(),extend="both")
I get the other part of the map:
I cannot seem to get both parts of the map to display correctly together. I tried using contourf twice in the same plot, one for each section of the map, but only the last contourf line plots. Any help would be much appreciated!
I'm trying to write a function to display astronomical images with a colorbar on the top (automaticly with the same length of the x-axis).
I'm having problem because when I try to put the tick on the top it doesn't do anything...it keeps the tick on the bottom of the colorbar (and also the tick on the y-axis of the colobar).
I think that could be a problem with the WCS coordinate of the x-axis, because when i try to do it without the projection it work well!
import numpy as np
import matplotlib.pyplot as plt
from astropy import wcs
from matplotlib.colors import PowerNorm
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import cm
#WCS coordinate system
w = wcs.WCS(naxis=2)
w.wcs.crpix = [23.5, 23.5]
w.wcs.cdelt = np.array([-0.0035, 0.0035])
w.wcs.crval = [266.8451, -28.151658]
w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
w.wcs.set_pv([(2, 1, 45.0)])
#generate an array as image test
data = (np.arange(10000).reshape((100,100)))
#display image
fig = plt.figure()
ax = plt.gca(projection=w)
graf = ax.imshow(data, origin='lower', cmap=cm.viridis, norm=PowerNorm(1))
#colorbar
divider = make_axes_locatable(ax)
cax = divider.append_axes("top", size="5%")
cbar = fig.colorbar(graf, cax=cax, orientation='horizontal')
cax.xaxis.set_ticks_position('top')
fig.show()
Thanks!
You can fix this issue using matplotlib's axes class.
...
import matplotlib.axes as maxes
cax = divider.append_axes("top", size="5%", axes_class=maxes.Axes)
...
You need to use the internal machinery of the WCSAxes to handle the ticks in the WCS projection. It looks like WCSAxes handles the colorbar ticks through a coordinate map container (you can find it in cbar.ax.coords) instead of the xaxis/yaxis attributes (that don't seem to be used much).
So, after running your code, the following trick worked for me and the xticks moved up:
c_x = cbar.ax.coords['x']
c_x.set_ticklabel_position('t')
cbar.update_normal(cax)
To get something like this to work, I needed a few additional parameters:
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cax.coords[0].grid(False)
cax.coords[1].grid(False)
cax.tick_params(direction='in')
cax.coords[0].set_ticks(alpha=0, color='w', size=0, values=[]*u.dimensionless_unscaled)
cax.coords[1].set_ticklabel_position('r')
cax.coords[1].set_axislabel_position('r')
because the default axis gad the grid on, the labels to the left, and x-axis labels enabled. I'm not sure why the original post didn't have issues with this.
I would like to create a matrix subplot and display each BMP files, from a directory, in a different subplot, but I cannot find the appropriate solution for my problem, could somebody helping me?.
This the code that I have:
import os, sys
from PIL import Image
import matplotlib.pyplot as plt
from glob import glob
bmps = glob('*trace*.bmp')
fig, axes = plt.subplots(3, 3)
for arch in bmps:
i = Image.open(arch)
iar = np.array(i)
for i in range(3):
for j in range(3):
axes[i, j].plot(iar)
plt.subplots_adjust(wspace=0, hspace=0)
plt.show()
I am having the following error after executing:
natively matplotlib only supports PNG images, see http://matplotlib.org/users/image_tutorial.html
then the way is always read the image - plot the image
read image
img1 = mpimg.imread('stinkbug1.png')
img2 = mpimg.imread('stinkbug2.png')
plot image (2 subplots)
plt.figure(1)
plt.subplot(211)
plt.imshow(img1)
plt.subplot(212)
plt.imshow(img2)
plt.show()
follow the tutorial on http://matplotlib.org/users/image_tutorial.html (because of the import libraries)
here is a thread on plotting bmps with matplotlib: Why bmp image displayed as wrong color with plt.imshow of matplotlib on IPython-notebook?
The bmp has three color channels, plus the height and width, giving it a shape of (h,w,3). I believe plotting the image gives you an error because the plot only accepts two dimensions. You could grayscale the image, which would produce a matrix of only two dimensions (h,w).
Without knowing the dimensions of the images, you could do something like this:
for idx, arch in enumerate(bmps):
i = idx % 3 # Get subplot row
j = idx // 3 # Get subplot column
image = Image.open(arch)
iar_shp = np.array(image).shape # Get h,w dimensions
image = image.convert('L') # convert to grayscale
# Load grayscale matrix, reshape to dimensions of color bmp
iar = np.array(image.getdata()).reshape(iar_shp[0], iar_shp[1])
axes[i, j].plot(iar)
plt.subplots_adjust(wspace=0, hspace=0)
plt.show()
In matplotlib how to overlay the shapefile (available in folder) as attached below at the top right position outside the plot.
The code referenced by banderkat:
import matplotlib.pyplot as plt
import Image
import numpy as np
im = Image.open('Jbc4j.jpg')
width = im.size[0]
height = im.size[1]
# We need a float array between 0-1, rather than
# a uint8 array between 0-255
im = np.array(im).astype(np.float) / 255
a = np.random.randint(0,100,100)
b = range(100)
fig = plt.figure(1,figsize=(5, 7), dpi=80, facecolor='w')
ax = fig.add_subplot(111)
ax.scatter(a,b)
fig.canvas.draw()
# With newer (1.0) versions of matplotlib, you can
# use the "zorder" kwarg to make the image overlay
# the plot, rather than hide behind it... (e.g. zorder=10)
fig.figimage(im, fig.bbox.xmax - width, fig.bbox.ymax - height, zorder=0)
# (Saving with the same dpi as the screen default to
# avoid displacing the logo image)
fig.savefig('temp.png', dpi=80)
plt.show()
Produces the following result (imaged cropped to save space).
Changing the zorder=1 will place the image on top.
Other helpful references:
How to change background color for scatter plot in matplotlib
How do you change the size of figures drawn with matplotlib?
Python/Matplotlib - Change the relative size of a subplot
In Matplotlib, what does the argument mean in fig.add_subplot(111)?
Customizing Location of Subplot Using GridSpec
You can use basemap toolkit to load and plot shapefile. Here I've plotted shapeFile in a separate axes and aligned it to top-right of other axes plot using 'subplot2grid'.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import matplotlib.gridspec as gridspec
def plotShapeFile():
# Lambert Conformal Conic map.
m = Basemap(llcrnrlon=-100.,llcrnrlat=0.,urcrnrlon=-20.,urcrnrlat=57.,
projection='lcc',lat_1=20.,lat_2=40.,lon_0=-60.,
resolution ='l',area_thresh=1000.)
# read shapefile.
shp_info = m.readshapefile('C:/basemap-1.0.6/basemap-1.0.6/examples/huralll020','hurrtracks',drawbounds=False)
# find names of storms that reached Cat 4.
names = []
for shapedict in m.hurrtracks_info:
cat = shapedict['CATEGORY']
name = shapedict['NAME']
if cat in ['H4','H5'] and name not in names:
# only use named storms.
if name != 'NOT NAMED': names.append(name)
# plot tracks of those storms.
for shapedict,shape in zip(m.hurrtracks_info,m.hurrtracks):
name = shapedict['NAME']
cat = shapedict['CATEGORY']
if name in names:
xx,yy = zip(*shape)
# show part of track where storm > Cat 4 as thick red.
if cat in ['H4','H5']:
m.plot(xx,yy,linewidth=1.5,color='r')
elif cat in ['H1','H2','H3']:
m.plot(xx,yy,color='k')
# draw coastlines, meridians and parallels.
m.drawcoastlines()
m.drawcountries()
m.drawmapboundary(fill_color='#99ffff')
m.fillcontinents(color='#cc9966',lake_color='#99ffff')
m.drawparallels(np.arange(10,70,20),labels=[1,1,0,0])
m.drawmeridians(np.arange(-100,0,20),labels=[0,0,0,1])
if __name__ == '__main__':
fig=plt.figure()
plt.subplots_adjust(wspace=0.001, hspace=0.001)
ax1=plt.subplot2grid((5,5), (0,0), colspan=4, rowspan=4)
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15,30,45, 10]
explode=(0, 0.05, 0, 0)
p1,t1,at1 = plt.pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True)
plt.title('Raining Hogs and Dogs', bbox={'facecolor':'0.8', 'pad':5})
ax2=plt.subplot2grid((5,5), (0,4), colspan=1, rowspan=1)
#draw shapeFile on the current active axes, i.e. ax2
plotShapeFile()
plt.tight_layout()
plt.show()
Below are links to references I've used:
http://sourceforge.net/projects/matplotlib/files/matplotlib-toolkits/basemap-1.0.6/
http://matplotlib.org/basemap/users/examples.html
Output: