How to place matplotlib legend according to coordinate - matplotlib

I have several plots and one of these showed below:
Example plot
Problem is I have many plots and I need to put the legend differently according to the position where x=0 and line of x=0 may vary in different plots.
How can I achieve this?
besides, bbox_to_anchor just allow me locate relatively to the fig, but have no idea of the inside (x,y) coordinate.
This is the part plotting:
ax.errorbar(x=x, y=y_erd, yerr=e_erd, fmt='-o',ecolor='orange',elinewidth=1,ms=5,mfc='wheat',mec='salmon',capsize=3)
ax.errorbar(x=x, y=y_ers, yerr=e_ers, fmt='-o',ecolor='blue',elinewidth=1,ms=5,mfc='wheat',mec='salmon',capsize=3)
ax.legend(['ERD', 'ERS'], loc="upper left", bbox_to_anchor=(1, 0.85),fontsize='x-small')
ax.axhline(y=0, color='r', linestyle='--')

We have created a code to calculate the zero position of the x and y axes using a simple sample as an example. First, get the tick values for each axis. Then, use the obtained value to get the index of zero. The next step is to calculate the position of the tick marks for the difference between the minimum and maximum values. From the array, we obtain the coordinates based on the zero index we obtained earlier. Set the obtained coordinates to bbox_to_anchor=[].
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-10, 10, 500)
y = np.sin(x)
fig, ax = plt.subplots()
ax.plot(x, y, label='x=0,y=0')
xticks, yticks = ax.get_xticks(), ax.get_yticks()
xpos, ypos = 0, 0
for i,(x,y) in enumerate(zip(xticks, yticks)):
if x == 0:
xpos = i
if y == 0:
ypos = i
print(xpos, ypos)
x_min, x_max = ax.get_xlim()
xticks = [(tick - x_min)/(x_max - x_min) for tick in xticks]
y_min, y_max = ax.get_ylim()
yticks = [(tick - y_min)/(y_max - y_min) for tick in yticks]
print(xticks[xpos], yticks[ypos])
ax.legend(bbox_to_anchor=[xticks[xpos], yticks[ypos]], loc='center')
plt.show()

Related

How to adjust x-axis spacing on distplot? [duplicate]

I am trying to fix how python plots my data.
Say:
x = [0,5,9,10,15]
y = [0,1,2,3,4]
matplotlib.pyplot.plot(x,y)
matplotlib.pyplot.show()
The x axis' ticks are plotted in intervals of 5. Is there a way to make it show intervals of 1?
You could explicitly set where you want to tick marks with plt.xticks:
plt.xticks(np.arange(min(x), max(x)+1, 1.0))
For example,
import numpy as np
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(np.arange(min(x), max(x)+1, 1.0))
plt.show()
(np.arange was used rather than Python's range function just in case min(x) and max(x) are floats instead of ints.)
The plt.plot (or ax.plot) function will automatically set default x and y limits. If you wish to keep those limits, and just change the stepsize of the tick marks, then you could use ax.get_xlim() to discover what limits Matplotlib has already set.
start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end, stepsize))
The default tick formatter should do a decent job rounding the tick values to a sensible number of significant digits. However, if you wish to have more control over the format, you can define your own formatter. For example,
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
Here's a runnable example:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
fig, ax = plt.subplots()
ax.plot(x,y)
start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end, 0.712123))
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
plt.show()
Another approach is to set the axis locator:
import matplotlib.ticker as plticker
loc = plticker.MultipleLocator(base=1.0) # this locator puts ticks at regular intervals
ax.xaxis.set_major_locator(loc)
There are several different types of locator depending upon your needs.
Here is a full example:
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
fig, ax = plt.subplots()
ax.plot(x,y)
loc = plticker.MultipleLocator(base=1.0) # this locator puts ticks at regular intervals
ax.xaxis.set_major_locator(loc)
plt.show()
I like this solution (from the Matplotlib Plotting Cookbook):
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
tick_spacing = 1
fig, ax = plt.subplots(1,1)
ax.plot(x,y)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing))
plt.show()
This solution give you explicit control of the tick spacing via the number given to ticker.MultipleLocater(), allows automatic limit determination, and is easy to read later.
In case anyone is interested in a general one-liner, simply get the current ticks and use it to set the new ticks by sampling every other tick.
ax.set_xticks(ax.get_xticks()[::2])
if you just want to set the spacing a simple one liner with minimal boilerplate:
plt.gca().xaxis.set_major_locator(plt.MultipleLocator(1))
also works easily for minor ticks:
plt.gca().xaxis.set_minor_locator(plt.MultipleLocator(1))
a bit of a mouthfull, but pretty compact
This is a bit hacky, but by far the cleanest/easiest to understand example that I've found to do this. It's from an answer on SO here:
Cleanest way to hide every nth tick label in matplotlib colorbar?
for label in ax.get_xticklabels()[::2]:
label.set_visible(False)
Then you can loop over the labels setting them to visible or not depending on the density you want.
edit: note that sometimes matplotlib sets labels == '', so it might look like a label is not present, when in fact it is and just isn't displaying anything. To make sure you're looping through actual visible labels, you could try:
visible_labels = [lab for lab in ax.get_xticklabels() if lab.get_visible() is True and lab.get_text() != '']
plt.setp(visible_labels[::2], visible=False)
This is an old topic, but I stumble over this every now and then and made this function. It's very convenient:
import matplotlib.pyplot as pp
import numpy as np
def resadjust(ax, xres=None, yres=None):
"""
Send in an axis and I fix the resolution as desired.
"""
if xres:
start, stop = ax.get_xlim()
ticks = np.arange(start, stop + xres, xres)
ax.set_xticks(ticks)
if yres:
start, stop = ax.get_ylim()
ticks = np.arange(start, stop + yres, yres)
ax.set_yticks(ticks)
One caveat of controlling the ticks like this is that one does no longer enjoy the interactive automagic updating of max scale after an added line. Then do
gca().set_ylim(top=new_top) # for example
and run the resadjust function again.
I developed an inelegant solution. Consider that we have the X axis and also a list of labels for each point in X.
Example:
import matplotlib.pyplot as plt
x = [0,1,2,3,4,5]
y = [10,20,15,18,7,19]
xlabels = ['jan','feb','mar','apr','may','jun']
Let's say that I want to show ticks labels only for 'feb' and 'jun'
xlabelsnew = []
for i in xlabels:
if i not in ['feb','jun']:
i = ' '
xlabelsnew.append(i)
else:
xlabelsnew.append(i)
Good, now we have a fake list of labels. First, we plotted the original version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabels,rotation=45)
plt.show()
Now, the modified version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabelsnew,rotation=45)
plt.show()
Pure Python Implementation
Below's a pure python implementation of the desired functionality that handles any numeric series (int or float) with positive, negative, or mixed values and allows for the user to specify the desired step size:
import math
def computeTicks (x, step = 5):
"""
Computes domain with given step encompassing series x
# params
x - Required - A list-like object of integers or floats
step - Optional - Tick frequency
"""
xMax, xMin = math.ceil(max(x)), math.floor(min(x))
dMax, dMin = xMax + abs((xMax % step) - step) + (step if (xMax % step != 0) else 0), xMin - abs((xMin % step))
return range(dMin, dMax, step)
Sample Output
# Negative to Positive
series = [-2, 18, 24, 29, 43]
print(list(computeTicks(series)))
[-5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
# Negative to 0
series = [-30, -14, -10, -9, -3, 0]
print(list(computeTicks(series)))
[-30, -25, -20, -15, -10, -5, 0]
# 0 to Positive
series = [19, 23, 24, 27]
print(list(computeTicks(series)))
[15, 20, 25, 30]
# Floats
series = [1.8, 12.0, 21.2]
print(list(computeTicks(series)))
[0, 5, 10, 15, 20, 25]
# Step – 100
series = [118.3, 293.2, 768.1]
print(list(computeTicks(series, step = 100)))
[100, 200, 300, 400, 500, 600, 700, 800]
Sample Usage
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(computeTicks(x))
plt.show()
Notice the x-axis has integer values all evenly spaced by 5, whereas the y-axis has a different interval (the matplotlib default behavior, because the ticks weren't specified).
Generalisable one liner, with only Numpy imported:
ax.set_xticks(np.arange(min(x),max(x),1))
Set in the context of the question:
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x = [0,5,9,10,15]
y = [0,1,2,3,4]
ax.plot(x,y)
ax.set_xticks(np.arange(min(x),max(x),1))
plt.show()
How it works:
fig, ax = plt.subplots() gives the ax object which contains the axes.
np.arange(min(x),max(x),1) gives an array of interval 1 from the min of x to the max of x. This is the new x ticks that we want.
ax.set_xticks() changes the ticks on the ax object.
xmarks=[i for i in range(1,length+1,1)]
plt.xticks(xmarks)
This worked for me
if you want ticks between [1,5] (1 and 5 inclusive) then replace
length = 5
Since None of the above solutions worked for my usecase, here I provide a solution using None (pun!) which can be adapted to a wide variety of scenarios.
Here is a sample piece of code that produces cluttered ticks on both X and Y axes.
# Note the super cluttered ticks on both X and Y axis.
# inputs
x = np.arange(1, 101)
y = x * np.log(x)
fig = plt.figure() # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xticks(x) # set xtick values
ax.set_yticks(y) # set ytick values
plt.show()
Now, we clean up the clutter with a new plot that shows only a sparse set of values on both x and y axes as ticks.
# inputs
x = np.arange(1, 101)
y = x * np.log(x)
fig = plt.figure() # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xticks(x)
ax.set_yticks(y)
# which values need to be shown?
# here, we show every third value from `x` and `y`
show_every = 3
sparse_xticks = [None] * x.shape[0]
sparse_xticks[::show_every] = x[::show_every]
sparse_yticks = [None] * y.shape[0]
sparse_yticks[::show_every] = y[::show_every]
ax.set_xticklabels(sparse_xticks, fontsize=6) # set sparse xtick values
ax.set_yticklabels(sparse_yticks, fontsize=6) # set sparse ytick values
plt.show()
Depending on the usecase, one can adapt the above code simply by changing show_every and using that for sampling tick values for X or Y or both the axes.
If this stepsize based solution doesn't fit, then one can also populate the values of sparse_xticks or sparse_yticks at irregular intervals, if that is what is desired.
You can loop through labels and show or hide those you want:
for i, label in enumerate(ax.get_xticklabels()):
if i % interval != 0:
label.set_visible(False)

Tick labels in between colors (discrete colorer)

Hi I want to put the ticklabels between colors (center of the intervals), and the figure is plotted by discrete colors. But the min value is not 0. How can I write the code to do that?
I used following code to do that, but what I got is wrong...
n_clusters = len(cbar_tick_label)
tick_locs = (np.arange(n_clusters)+0.5)*(n_clusters-1)/(n_clusters)
cbar.set_ticks(tick_locs)
cbar.set_ticklabels(cbar_tick_label)
This code is from question: Discrete Color Bar with Tick labels in between colors. But it does not work when the min value of data is not zero.
Thanks!
Suppose there are N (e.g. 6) clusters. If you subdivide the range from the lowest number (e.g. 5) to the highest number (e.g. 10) into N equal parts, there will be a tick at every border between color cells. Subdividing into 2*N+1 equal parts, will also have a tick in the center of each color cell. Now, skipping every other of these 2*N+1 ticks will leave us with only the cell centers. So, np.linspace(5, 10, 6*2+1) are the ticks for borders and centers; taking np.linspace(5, 10, 6*2+1)[1::2] will be only the centers.
import numpy as np
import matplotlib.pyplot as plt
x, y = np.random.rand(2, 100)
c = np.random.randint(5, 11, x.shape)
n_clusters = c.max() - c.min() + 1
fig, ax = plt.subplots()
cmap = plt.get_cmap('inferno_r', n_clusters)
scat = ax.scatter(x, y, c=c, cmap=cmap)
cbar = plt.colorbar(scat)
tick_locs = np.linspace(c.min(), c.max(), 2 * n_clusters + 1)[1::2]
cbar_tick_label = np.arange(c.min(), c.max() + 1)
cbar.set_ticks(tick_locs)
cbar.set_ticklabels(cbar_tick_label)
plt.show()

Shaded region up to the end of frame with Matplotlib

Using Matplotlib I am trying to shade the region y > N, with N some number.
The problem is that I am not able to have the shaded region going to the end of the frame.
Here is a simple example.
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1,1)
x = [i for i in range(0,100,10)]
ax.plot(x,x,'-o')
N=110
ylim = max(ax.get_ylim())
ax.axhspan(N,ylim,alpha=.5)
plt.show()
The result is this:
How to have the shaded region not stopping, but arriving up to the end of the frame?
ax.autoscale() can come in handy here. Default, matplotlib automatically adapts the limits of the axes every time something is added. Normally also some padding is added to leave some free space above and below (and left and right).
Calling ax.autoscale(enable=True, axis='y', tight=True) changes this behavior for the y-axis, forcing "tight" limits, so without padding.
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
x = [i for i in range(0, 100, 10)]
ax.plot(x, x, '-o')
N = 110
ylim1 = max(ax.get_ylim())
ax.autoscale(enable=True, axis='y', tight=True)
ax.axhspan(N, ylim1, alpha=.5)
plt.show()
Alternatively, you could collect the limits before calling axhspan and setting them manually afterwards:
ax.plot(x, x, '-o')
N = 110
ylim0, ylim1 = ax.get_ylim()
ax.axhspan(N, ylim1, alpha=.5)
ax.set_ylim(ylim0, max(N, ylim1))

colormap for 3d bar plot in matplotlib applied to every bar

Does anyone know how to implement easily colormaps to 3d bar plots in matplotlib?
Consider this example, how do I change each bar according to a colormap? For example, short bars should be mainly blue, while taller bars graduate their colors from blue towards the red...
In the physical sciences, it's common to want a so-called LEGO plot, which is I think what the original user is going for. Kevin G's answer is good and got me to the final result. Here's a more advanced histogram, for x-y scatter data, colored by height:
xAmplitudes = np.random.exponential(10,10000) #your data here
yAmplitudes = np.random.normal(50,10,10000) #your other data here - must be same array length
x = np.array(xAmplitudes) #turn x,y data into numpy arrays
y = np.array(yAmplitudes) #useful for regular matplotlib arrays
fig = plt.figure() #create a canvas, tell matplotlib it's 3d
ax = fig.add_subplot(111, projection='3d')
#make histogram stuff - set bins - I choose 20x20 because I have a lot of data
hist, xedges, yedges = np.histogram2d(x, y, bins=(20,20))
xpos, ypos = np.meshgrid(xedges[:-1]+xedges[1:], yedges[:-1]+yedges[1:])
xpos = xpos.flatten()/2.
ypos = ypos.flatten()/2.
zpos = np.zeros_like (xpos)
dx = xedges [1] - xedges [0]
dy = yedges [1] - yedges [0]
dz = hist.flatten()
cmap = cm.get_cmap('jet') # Get desired colormap - you can change this!
max_height = np.max(dz) # get range of colorbars so we can normalize
min_height = np.min(dz)
# scale each z to [0,1], and get their rgb values
rgba = [cmap((k-min_height)/max_height) for k in dz]
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color=rgba, zsort='average')
plt.title("X vs. Y Amplitudes for ____ Data")
plt.xlabel("My X data source")
plt.ylabel("My Y data source")
plt.savefig("Your_title_goes_here")
plt.show()
Note: results will vary depending on how many bins you choose and how much data you use. This code needs you to insert some data or generate a random linear array. Resulting plots are below, with two different perspectives:
So maybe not exactly what you're looking for (perhaps a good starting point for you), but using
Getting individual colors from a color map in matplotlib
can give varying solid colors for the bars:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.cm as cm # import colormap stuff!
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x, y = np.random.rand(2, 100) * 4
hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[0, 4], [0, 4]])
# Construct arrays for the anchor positions of the 16 bars.
# Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
# ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid
# with indexing='ij'.
xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
xpos = xpos.flatten('F')
ypos = ypos.flatten('F')
zpos = np.zeros_like(xpos)
# Construct arrays with the dimensions for the 16 bars.
dx = 0.5 * np.ones_like(zpos)
dy = dx.copy()
dz = hist.flatten()
cmap = cm.get_cmap('jet') # Get desired colormap
max_height = np.max(dz) # get range of colorbars
min_height = np.min(dz)
# scale each z to [0,1], and get their rgb values
rgba = [cmap((k-min_height)/max_height) for k in dz]
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color=rgba, zsort='average')
plt.show()
Personally, I find that ugly as sin! But it probably won't look too bad with a sequential colormap - https://matplotlib.org/examples/color/colormaps_reference.html

How to set markers only at tick positions in matplotlib?

I am aware of the markevery option that allows to only place a marker at every n-th point. However, I'm using the MaxNLocator to define tick positions and would like to display markers at those tick positions only. How can I display markers at tick positions only, either using an option or manually placing them?
You can get the ticks with ax.get_xticks(), find the closest point corresponding to each xtick and then get the index to the x-values. With the indices it is easy to plot the xtick-values.
#!/usr/bin/env python
# a bar plot with errorbars
import numpy as np
import matplotlib.pyplot as plt
plt.close('all')
def find_nearest(array,value):
idx = (np.abs(array-value)).argmin()
return idx
x = np.linspace(-1, 1, 100)
y = x**2
fig, ax = plt.subplots(1, 1)
ax.plot(x, y, '--')
xtick = ax.get_xticks()
idx = [find_nearest(x, tick) for tick in xtick]
ax.plot(x[idx], y[idx], 'ro')
plt.show()