Pandas DataFrame append Series - pandas

I have the following table and series
df = pd.DataFrame({'a':[], 'b':[]})
s1 = pd.Series([1,2,3])
df.b = s1
s2 = pd.Series([3,2,1])
s3 = pd.Series([4,5,6])
s4,s5,s6...
My objective is to append each series into column b in the data frame. But the problem is that I have to attach the series one by one in a loop.
The only way I can think of is
temp_df = pd.DataFrame({'a':[], 'b'=[]})
temp_df.b = s2
df.append(temp_df, ignore_index = True)
Is there a more effective way of doing this?

Related

Creating new dataframe by search result in df

I am reading a txt file for search variable.
I am using this variable to find it in a dataframe.
for lines in lines_list:
sn = lines
if sn in df[df['SERIAL'].str.contains(sn)]:
condition = df[df['SERIAL'].str.contains(sn)]
df_new = pd.DataFrame(condition)
df_new.to_csv('try.csv',mode='a', sep=',', index=False)
When I check the try.csv file, it has much more lines the txt file has.
The df has a lots of lines, more than the txt file.
I want save the whole line from search result into a dataframe or file
I tried to append the search result to a new dataframe or csv.
first create line list
f = open("text.txt", "r")
l = list(map(lambda x: x.strip(), f.readlines()))
write this apply func has comparing values and filtering
def apply_func(x):
if str(x) in l:
return x
return np.nan
and get output
df["Serial"] = df["Serial"].apply(apply_func)
df.dropna(inplace=True)
df.to_csv("new_df.csv", mode="a", index=False)
or try filter method
f = open("text.txt", "r")
l = list(map(lambda x: x.strip(), f.readlines()))
df = df.set_index("Serial").filter(items=l, axis=0).reset_index()
df.to_csv("new_df.csv", mode="a", index=False)

Better way to concatenate panda matrices

I need to concatenate multiple matrices (containing numbers and strings) in a loop, so far I wrote this solution but I don't like to use a dummy variable (h) and I'm sure the code could be improved.
Here it is:
h = 0
for name in list_of_matrices:
h +=1
Matrix = pd.read_csv(name)
if h == 1:
Matrix_final = Matrix
continue
Matrix_final = pd.concat([Matrix_final,Matrix])
For some reason if I use the following code I end up having 2 matrices one after the other and not a joint one (so this code is not fitting):
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)

How can I leave every answer from 'for'

I think my code works well.
But the problem is that my code does not leave every answer on DataFrame R.
When I print R, only the last answer appeared.
What should I do to display every answer?
I want to add answer on the next column.
import numpy as np
import pandas as pd
DATA = pd.DataFrame()
DATA = pd.read_excel('C:\gskim\P4DS/Monthly Stock adjClose2.xlsx')
DATA = DATA.set_index("Date")
DATA1 = np.log(DATA/DATA.shift(1))
DATA2 = DATA1.drop(DATA1.index[0])*100
F = pd.DataFrame(index = DATA2.index)
for i in range (0, 276):
Q = DATA2.iloc[i].dropna()
W = sorted(abs(Q), reverse = False)
W_qcut = pd.qcut(W, 5, labels = ['A', 'B', 'C', 'D', 'E'])
F = Q.groupby(W_qcut).sum()
R = pd.DataFrame(F)
print(R)
the first table is the current result, I want to fill every blank tables on the second table as a result:

R: How to plot the last row of a dataframe?

This must be very easy, but I cannot get a plot of the last/any row of a dataframe.
A = data.frame(a = rnorm(50), b = rnorm(50), c = rnorm(50))
barplot(A[nrow(A),1:3])
I get the error message:
Error in barplot.default(A[nrow(A), 1:3]) :
'height' must be a vector or a matrix
A solution using ggplot would be very welcome!
imported ggplot2 library and the dataset you gave me. used the tail command to get only the last row. Then had to melt() the data to get it into the right format, then plotted in ggplot2
library(ggplot2)
library(reshap2)
A = data.frame(a = rnorm(50), b = rnorm(50), c = rnorm(50))
A_tail <- tail(A, 1)
tailmelt <- melt(A_tail)
ggplot(data = tailmelt, aes( x = factor(variable), y = value, fill = variable ) ) +
geom_bar( stat = 'identity' )

vectorization of loop in pandas

I've been trying to vectorize the following with no such luck:
Consider two data frames. One is a list of dates:
cols = ['col1', 'col2']
index = pd.date_range('1/1/15','8/31/18')
df = pd.DataFrame(columns = cols )
What i'm doing currently is looping thru df and getting the counts of all rows that are less than or equal to the date in question with my main (large) dataframe df_main
for x in range(len(index)):
temp_arr = []
active = len(df_main[(df_main.n_date <= index[x])]
temp_arr = [index[x],active]
df= df.append(pd.Series(temp_arr,index=cols) ,ignore_index=True)
Is there a way to vectorize the above?
What about something like the following
#initializing
mycols = ['col1', 'col2']
myindex = pd.date_range('1/1/15','8/31/18')
mydf = pd.DataFrame(columns = mycols )
#create df_main (that has each of myindex's dates minus 10 days)
df_main = pd.DataFrame(data=myindex-pd.Timedelta(days=10), columns=['n_date'])
#wrap a dataframe around a list comprehension
mydf = pd.DataFrame([[x, len(df_main[df_main['n_date'] <= x])] for x in myindex])