I am looking for a distributed caching solution which supports a MOESI/MOESIF-like implemementation of a cache coherency protocol.
Our caching nodes are distributed over they globe and as a result see large latencies between them. So a distributed cache which partitions the keyspace would not work if we can not influence the placement of individual keys (e.g. Redis Cluster).
I am thinking about a cluster in which modifications of a certain key will invalidate all other copies of that key which might be cached by other nodes.
Pretty much a version of MOESI/MOESIF but at a larger scale (cloud vs chip).
Does somebody know a key-value db or distributed cache which would support this?
My current best bet is to implement this functionality on top of Redis by implementing a small proxy which implements the coherency between multiple Redis instances.
Related
I would like to know what is the best practice for using Redis in cloud (Google Memorystore in my case, Standard Tier) for multiple microservices/applications. From what I have researched so far following options are available:
Use single cluster and database, scaled horizontally for all the microservices. This seems most cost-effective as I will use the exact amount of nodes I will need for the whole system. The data isolation is impacted here, but I can reduce the impact e.g. by prefixing the keys with the microservice name.
Use separate clusters and databases for each microservice. In this case the isolation is better, the scaling of the needed cluster will impact a single microservice only, but this doesn't seem cost effective, as many nodes may be underloaded (e.g. microservice M1 utilizes 50% capacity of a node, microservice M2 utilizes 40% capacity of a node so in case 1 both microservices would by served only by a single node).
In theory I could use multiple databases to isolated data in a single cluster, but as far as I have read this is not supported by Redis (and using multiple databases on a single node causes performance issues).
I am leaning towards option 1., but perhaps I am missing something?
Not sure about best practices, I will tell you my experience.
In general I would go with Option #2.
Each microservices gets it's own redis instance or cluster.
Redis clusters follow their own microservice life. Ex they might get respawned when you redeploy or restart a service.
You might pay a bit more but you gain in resiliency and maintenance hassle.
I have read about Redis and RocksDB, I don't get the advantages of Redis over RocksDB.
I know that Redis is all in-memory and RocksDB is in-memory and uses flash storage. If all data fits in-memory, which one should I choose? do they have the same performance? Redis scales linearly with the number of CPU's? I guess that there are others differences that I don't get.
I have a dataset which fits in-memory and I was going to choose Redis but it seems that RocksDB offers me the same and if one day the dataset grows too much I wouldn't have to be worried about the memory.
They have nothing in common. You are trying to compare apples and oranges here.
Redis is a remote in-memory data store (similar to memcached). It is a server. A single Redis instance is very efficient, but totally non scalable (regarding CPU). A Redis cluster is scalable (regarding CPU).
RocksDB is an embedded key/value store (similar to BerkeleyDB or more exactly LevelDB). It is a library, supporting multi-threading and a persistence based on log-structured merge trees.
While Didier Spezia's answer is correct in his distinction between the two projects, they are linked by a project called LedisDB. LedisDB is an abstraction layer written in Go that implements much of the Redis API on top of storage engines like RocksDB. In many cases you can use the same Redis client library directly with LedisDB, making it almost a drop in replacement for Redis in certain situations. Redis is obviously faster, but as OP mentioned in his question, the main benefit of using RocksDB is that your dataset is not limited to the amount of available memory. I find that useful not because I'm processing super large datasets, but because RAM is expensive and you can get more milage out of smaller virtual servers.
Redis, in general, has more functionalities than RocksDB. It can natively understand the semantics of complex data structures such as lists and arrays . RocksDB, in contrast, looks at the stored values as a blob of data. If you want to do any further processing, you need to bring the data to your program and process it there (in other words, you can't delegate the processing to the database engine aka RocksDB).
RocksDB only runs on a single server. Redis has a clustered version (though it is not free)
Redis is built for in-memory computation, though it also support backing the data up to the persistent storage, but the main use cases are in memory use cases. RocksDB by contrast is usually used for persisting data and in most cases store the data on persistent medium.
RocksDB has a better multi-threaded support (specially for reads --writes still suffer from concurrent access).
Many memcached servers use Redis (where the protocol used is memcached but underlying server is Redis). This doesn't used most of Redis's functionality but is one case that Redis and RocksDB both function similarly (as a KVS though still in different context, where Redis based memcached is a cache but RocksDB is a database, though not an enterprise grade one)
#Guille If you know the behavior of hot data(getting fetched frequently) is based of time-stamp then Rocksdb would a smart choice, but do optimize it for fallback using bloom-filters .If your hot data is random ,then go for Redis .Using rocksDB entirely in memory is not generally recommended in log-structured databases like Rocksdb and its specifically optimized for SSD and flash storage .So my recommendation would be to understand the usecase and pick a DB for that particular usecase .
Redis is distributed, in-memory data store where as Rocks DB is embedded key-value store and not distributed.
Both are Key-Value Stores, so they have something in common.
As others mentioned RocksDB is embedded (as a library), while Redis is a standalone server. Moreover, Redis can sharded.
RocksDB
Redis
persisted on disk
stored in memory
strictly serializable
eventually consistent
sorted collections
no sorting
vertical scaling
horizontal scaling
If you don't need horizontal scaling, RocksDB is often a superior choice. Some people would assume that an in-memory store would be strictly faster than a persistent one, but it is not always true. Embedded storage doesn't have networking bottlenecks, which matters greatly in practice, especially for vertical scaling on bigger machines.
If you need to server RocksDB over a network or need high-level language bindings, the most efficient approach would be using project UKV. It, however, also supports other embedded stores as engines and provides higher-level functionality, such as Graph collections, similar to RedisGraph, and Document collections, like RedisJSON.
We are currently using Redis and it's a great in-memory datastore. We're starting to look at some new problems where the in-memory limitation is a factor and looking at other option. One we came across is Aerospike - it seems very fast, even faster than redis on in-memory single-shard operation.
Now that we're adding this to our stack, I'm trying to understand the use cases where Aerospike would not be able to replace redis?
Aerospike supports less data types than Redis, for example pub/sub is not available in Aerospike. However, Aerospike is a distributed key-value store and has superior clustering features.
The two are both great databases. It really depends on how big of a dataset you're handling, and your expectations of growth.
Redis:
Key/value store, dataset fits into RAM in single machine or you can shard yourself across multiple machines (and/or cores since it's single-threaded), persists data to disk, has data structures like lists/sets, basic pub/sub, simple slave replication, Lua scripting.
Aerospike:
Key/value row-store (meaning value contains bins with values and those values can be more maps/lists/values to have multiple levels), multithreaded to use all cores, built for clustering across machines with replication, and can do cross-datacenter replication, Lua scripting for UDFs. Can run directly on SSDs so you can store much more data without it fitting into RAM.
Comparison:
If you just have a smaller dataset or are fine with single-core performance then Redis is great. Quick to install, simple to run, easy to just attach a slave with 1 command if you need more read scalability. Redis also has more unique functionality with list/set/bitmap operations so you can do "more" out of the box.
If you want to store more complicated or nested data or need more performance on a single machine or clustering, then Aerospike gets the job done really well with less operational overhead. Very fast performance and easy cluster setup with all nodes being exactly the same role so you can scale reads and writes.
That's the big difference, scalability beyond a single core or server. With Lua scripting, you can usually fill in any native feature that Redis has into Aerospike. If you have lots of data (like TBs) then Aerospike's SSD feature means you get RAM-like performance without the RAM cost.
Have you looked at the benchmarks? I believe each one performs differently under different conditions and use cases:
http://www.aerospike.com/when-to-use-aerospike-vs-redis/
https://redislabs.com/blog/nosql-performance-aerospike-cassandra-datastax-couchbase-redis
Redis and Aerospike are different and both have their pros and cons, but Redis seems a better fit than Aerospike in the 2 following use cases:
when we don't need replication
We are using a big cache with intensive writes and a very short ttl (20s) for deduplication. There is no point in replicating this data. Redis would probably use half as much cpu and less than half as much RAM than Aerospike. It would be cheaper and as fast, or even faster thanks to pipelining.
when we need cross data-center replication
We have one large database that we need to access from 5 data centres, lots of writes, intensive reads. There is no perfect solution but the best one so far seems to store the central database in Redis and a copy on each data centre using Redis master-slave replication.
I am looking at porting a Java application to .NET, the application currently uses EhCache quite heavily and insists that it wants to support strong consistency (http://ehcache.org/documentation/get-started/consistency-options).
I am would like to use Redis in place of EhCache but does Redis support strong consistency or just support eventual consistency?
I've seen talk of a Redis Cluster but I guess this is a little way off release yet.
Or am I looking at this wrong? If Redis instance sat on a different server altogether and served two frontend servers how big could it get before we'd need to look at a Master / Slave style affair?
A single instance of Redis is consistent. There are options for consistency across many instances. #antirez (Redis developer) recently wrote a blog post, Redis data model and eventual consistency, and recommended Twemproxy for sharding Redis, which would give you consistency over many instances.
I don't know EhCache, so can't comment on whether Redis is a suitable replacement. One potential problem (porting to .NET) with Twemproxy is it seems to only run on Linux.
How big can a single Redis instance get? Depends on how much RAM you have.
How quickly will it get this big? Depends on how your data looks.
That said, in my experience Redis stores data quite efficiently. One app I have holds info for 200k users, 20k articles, all relationships between objects, weekly leader boards, stats, etc. (330k keys in total) in 400mb of RAM.
Redis is easy to use and fun to work with. Try it out and see if it meets your needs. If you do decide to use it and might one day want to shard, shard your data from the beginning.
Redis is not strongly consistent out of the box. You will probably need to apply 3rd party solutions to make it consistent. Here is a quote from docs:
Write safety
Redis Cluster uses asynchronous replication between nodes, and last failover wins implicit merge function. This means that the last elected master dataset eventually replaces all the other replicas. There is always a window of time when it is possible to lose writes during partitions. However these windows are very different in the case of a client that is connected to the majority of masters, and a client that is connected to the minority of masters.
Usually you need to have synchronous replication to achieve strong consistence in a distributed partitioned systems.
I want to use Redis as a database, not a cache. From my (limited) understanding, Redis is an in-memory datastore. What are the risks of using Redis, and how can I mitigate them?
You can use Redis as an authoritative store in a number of different ways:
Turn on AOF (Append-only File store) see AOF docs. This will keep a log of all Redis commands made against your dataset in real-time.
Run Redis using Master-Slave replication see replication docs. This will allow you to provide high-availability if one of your instances fails.
If you're running on something like EC2 you can EBS back your Redis partition to provide another layer of protection against instance failure.
On the horizon is Redis Cluster - this is specifically designed as a way to run Redis in a way that should help with HA and scalability. However, this won't appear for at least another six months or so.
Redis is an in-memory store which can also write the data back to disc. You can specify how many times to do a fsync to make redis safer(but also slower => trade-off) .
But still I am not certain if redis is in state yet to really store (mission) critical data in it (yet?). If for example it is not a huge problem when 1 more tweets(twitter.com) or something similiar get losts then I would certainly use redis. There is also a lot of information available about persistence at redis's own website.
You should also be aware of some persistence problems which could occur by reading antirez(redis maintainers) blog article. You should read his blog because he has some interesting articles.
I would like to share a few things that we have learned by using Redis as a primary Database in our service. We choose Redis since we had data that could not be partitioned. We wanted to get the best performance we could get out of one box
Pros:
Redis was unbeatable in raw performance. We got 10K transactions per second out of the box (Note that one transaction involved multiple Redis commands). We were able to hit a rate of 25K+ transactions per second after a few optimizations, along with LUA scripts. So when it comes to performance per box, Redis is unmatched.
Redis is very simple to setup and has a very small learning curve as opposed to other SQL and NoSQL datastores.
Cons:
Redis supports only few primitive Data Structures like Hashes, Sets, Lists etc. and operations on these Data Structures. These are more than sufficient when you are using Redis as a cache, but if you want to use Redis as a full fledged primary data store, you will feel constrained. We had a tough time modelling our data requirements using these simple types.
The biggest problem we have seen with Redis was the lack of flexibility. Once you have solutioned the structure of your data, any modifications to storage requirements or access patterns virtually requires re-thinking of the entire solution. Not sure if this is the case with all NoSQL data stores though (I have heard MongoDB is more flexible, but haven't used it myself)
Since Redis is single threaded, CPU utilization is very low. You can't put multiple Redis instances on the same machine to improve CPU utilization as they will compete for the same disk, making disk as the bottleneck.
Lack of horizontal scalability is a problem as mentioned by other answers.
As Redis is an in-memory storage, you cannot store large data that won't fit you machine's memory size. Redis usually work very bad when the data it stores is larger than 1/3 of the RAM size. So, this is the fatal limitation of using Redis as a database.
Certainly, you can distribute you big data into several Redis instances, but you have to do it all on your own manually. The operation usually be done like this(assuming you have only 1 instance from start):
Use its master-slave mechanism to replicate data to the second machine, Now you have 2 copies of the same data.
Cut off the connection between master and slave.
Delete the first half(split by hashing, etc) of data on the first machine, and delete the second half of data on the second machine.
Tell all clients(PHP, C, etc...) to operate on the first machine if the specified keys are on that machine, otherwise operate on the second machine.
This is the way how Redis scales! You also have to stop your service to prevent any writes during the migration.
To the expierence we encounter, we have this conclusion to Redis: Redis is not the right choice to store more than 30G data, Redis is not scalable, Redis is quite suitable for prototype development.
We later find an alternative to Redis, that is SSDB(https://github.com/ideawu/ssdb), a leveldb server that supports nearly all the APIs of Redis, it is suitable for storing more than 1TB of data, that only depends on the size of you harddisk.
Redis is a database, that means we can use it for persisting information for any kind of app, information like user accounts, blog posts, comments and so on. After storing information we can retrieve it later on by writing queries.
Now this behavior is similar to just about every other database, but what is the difference? Or rather why would we use it over any other database?
Redis is fast.
Redis is not fast because it's written in a special programming language or anything like that, it's fast because all data is stored in-memory.
Most databases store all their information between both the memory of a computer and the hard drive. Accessing data in-memory is fast, but getting it stored on a hard disk is relatively slow.
So rather than storing memory in hard disk, Redis decided to store it in memory.
Now, the downside to this is that working with data that is larger than the amount of memory your computer has, that is not going to work.
That may sound like a tremendous problem, but Redis has clear strategies for working around this limitation.
The above is just the first reason why Redis is so fast.
The second reason is that Redis stores all of its data or rather organizes all of its data in simple data structures such as Doubly Linked Lists, Sorted Sets and so on.
These data structures have well-known and well-understood performance characteristics. So as developers we can decide exactly how our information is organized and how to efficiently query data.
It's also very fast because Redis is simple in nature, it's not feature heavy; feature heavy datastores like Postgres have performance penalties.
So to use Redis as a database you have to know how to store in limited space, you have to know how to organize it into these simple data structures mentioned above and you have to understand how to work around the limited feature set.
So as far as mitigating risks, the way you start to do that is to start to think Redis Design Methodology and not SQL Database Design Methodology. What do I mean?
So instead of, step 1. Put the data in tables, step 2. figure out how we will query it.
With Redis it's more:
Step 1. Figure out what queries we need to answer.
Step 2. Structure data to best answer those queries.