Design neural network and implement it on tensorflow - tensorflow

I have been trying to design neural network which can fit this polynomial function :
y = 2x^2 + 4x^3 + 5
and i did this
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
import tensorflow as tf
from tensorflow import keras
def dataset(show=True):
X = np.arange(-25,25,0.1)
y = 2*X**2 + 4*X**3 + 5 + np.random.randn(500)*1000
if show :
plt.scatter(X,y)
plt.show()
return X,y
X,y = dataset()
X_scaled = X/max(X)
y_scaled = y/max(y)
poly = PolynomialFeatures(degree=4)
X_4 = poly.fit_transform(X_scaled.reshape(-1,1))
model = tf.keras.Sequential([keras.layers.Dense(units=1,input_shape=[5])])
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(optimizer=optimizer,loss='mean_squared_error')
tf_history = model.fit(X_4, y_scaled, epochs=200, verbose=True)
mse = tf_history.history['loss'][-1]
y_hat = model.predict(X_4)
The instruction said that use 1 input , 1 output and 1 hidden layer with 3 neurons.
How should i configure those ?

model = tf.keras.Sequential()
# hidden layer with 3 neurons
model.add(tf.keras.layers.Dense(3, activation='relu', input_shape=input_shape))
# output layer
model.add(tf.keras.layers.Dense(1, activation='relu'))

Related

Batchnormalization in Keras vs PyTorch vs Numpy are different

I created the BatchNormalization layer in Keras, PyTorch and calculated the same operation using Numpy but I get three different results. Am I making some error here?
Things I assume below: layer.get_weights() in tf.keras for BN layer returns in order gamma, beta, running_mean, running_var. For the BN operation I am using the following operation: gamma * (x - running_mean) / sqrt(running_var + epsilon) + beta
Code snippet to reproduce the issue:
import torch
import tensorflow
from torch.nn import Module, BatchNorm1d, Conv1d
from torch.nn.functional import pad
import numpy as np
from tensorflow.keras.layers import Conv1D, BatchNormalization, Input
from tensorflow.keras.models import Model
torch.backends.cudnn.deterministic = True
np.random.seed(12345)
z = Input((1024, 8), dtype=np.float32)
inp = z
z = Conv1D(64, 16, padding='same', use_bias=False)(z)
z = BatchNormalization(epsilon=0.001)(z)
keras_model = Model(inp, z)
# in order: conv-layer weight, gamma, beta, running_mean, running_var
weights = [np.random.random((16, 8, 64)), np.random.random((64,)), np.random.random((64,)), np.random.random((64,)),
np.random.random((64,))]
weights = [np.array(x, dtype=np.float32) for x in weights]
keras_model.layers[1].set_weights([weights[0]])
keras_model.layers[2].set_weights(weights[1:])
keras_model_subpart = Model(keras_model.inputs, keras_model.layers[1].output)
class TorchModel(Module):
def __init__(self):
super(TorchModel, self).__init__()
self.l1 = Conv1d(8, 64, 16, bias=False)
self.l2 = BatchNorm1d(64, 0.001)
def forward(self, x):
x = pad(x, (7, 8))
x = self.l1(x)
y = x
x = self.l2(x)
return y, x
torch_model = TorchModel().to(torch.device('cpu'))
torch_model.l1.weight.data = torch.from_numpy(weights[0].T).float()
torch_model.l2.weight.data = torch.from_numpy(weights[1].T).float()
torch_model.l2.bias.data = torch.from_numpy(weights[2]).float()
torch_model.l2.running_mean = torch.from_numpy(weights[3]).float()
torch_model.l2.running_var = torch.from_numpy(weights[4]).float()
torch_model.eval()
input_value = np.array(np.random.random((1024, 8)), dtype=np.float32)
keras_results = [np.array(keras_model_subpart.predict(input_value[np.newaxis, :, :])),
np.array(keras_model.predict(input_value[np.newaxis, :, :]))]
with torch.no_grad():
torch_results = [x.detach().numpy() for x in torch_model(torch.from_numpy(input_value.T[np.newaxis, :, :]).float())]
keras_results = [np.squeeze(x) for x in keras_results]
torch_results = [np.squeeze(x) for x in torch_results]
numpy_results = weights[1] * (keras_results[0] - weights[3]) / np.sqrt(weights[4] + 0.001) + weights[2]
print(torch.__version__, tensorflow.__version__, np.__version__, sep=",")
print('\nRESULTS:')
print('\tLayer 1 difference:', np.mean(np.abs(keras_results[0] - torch_results[0].T).flatten()))
print('\tLayer 2 difference:', np.mean(np.abs(keras_results[1] - torch_results[1].T).flatten()))
print('\tLayer 2 keras - numpy:', np.mean(np.abs(keras_results[1] - numpy_results).flatten()))
print('\tLayer 2 torch - numpy:', np.mean(np.abs(torch_results[1] - numpy_results.T).flatten()))
The output I get (after all the initialization printing of tensorflow)
1.7.1+cu110,2.4.1,1.19.5
RESULTS:
Layer 1 difference: 0.0
Layer 2 difference: 6.8671216e-07
Layer 2 keras - numpy: 2.291581e-06
Layer 2 torch - numpy: 1.8929532e-06

Time-Series LSTM Model wrong prediction

I am practicing how to create an LSTM model on a univariate series using this dataset from Kaggle: https://www.kaggle.com/sumanthvrao/daily-climate-time-series-data
My issue is that I am unable to get an accurate prediction of the temperature and my loss seems to be going all over the place. I have tried multiple methods including
Ensuring that time series data is stationary
Changing the time steps
Changing the hyperparameters
Using a stacked LSTM model
I am really curious as to what is wrong with my code although I do have a few hypothesis:
I made an error when preprocessing the data
I introduced stationarity wrongly
This dataset requires a multivariate approach
%tensorflow_version 2.x # this line is not required unless you are in a notebook
import tensorflow as tf
from numpy import array
from numpy import argmax
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatten
# preparing independent and dependent features
def prepare_data(timeseries_data, n_features):
X, y =[],[]
for i in range(len(timeseries_data)):
# find the end of this pattern
end_ix = i + n_features
# check if we are beyond the sequence
if end_ix > len(timeseries_data)-1:
break
# gather input and output parts of the pattern
seq_x, seq_y = timeseries_data[i:end_ix], timeseries_data[end_ix]
X.append(seq_x)
y.append(seq_y)
return np.array(X), np.array(y)
# preparing independent and dependent features
def prepare_x_input(timeseries_data, n_features):
x = []
for i in range(len(timeseries_data)):
# find the end of this pattern
end_ix = i + n_features
# check if we are beyond the sequence
if end_ix > len(timeseries_data):
break
# gather input and output parts of the pattern
seq_x = timeseries_data[i:end_ix]
x.append(seq_x)
x = x[-1:]
#remove non-stationerity
#x = np.log(x)
return np.array(x)
#read data and filter temperature column
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Weather Parameter/DailyDelhiClimateTrain.csv')
df.head()
temp_df = df.pop('meantemp')
plt.plot(temp_df)
#make data stationery
sta_temp_df = np.log(temp_df).diff()
plt.figure(figsize=(15,5))
plt.plot(sta_temp_df)
print(sta_temp_df)
time_step = 7
x, y = prepare_data(sta_temp_df, time_step)
n_features = 1
x = x.reshape((x.shape[0], x.shape[1], n_features))
model = Sequential()
model.add(LSTM(10, return_sequences=True, input_shape=(time_step, n_features)))
model.add(LSTM(10))
model.add(Dense(16, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
model.summary()
result = model.fit(x, y, epochs=800)
n_days = 113
pred_temp_df = list(temp_df)
test = sta_temp_df.copy()
sta_temp_df = list(sta_temp_df)
i = 0
while(i<n_days):
x_input = prepare_x_input(sta_temp_df, time_step)
print(x_input)
x_input = x_input.reshape((1, time_step, n_features))
#pass data into model
yhat = model.predict(x_input, verbose=0)
yhat.flatten
print(yhat[0][0])
sta_temp_df.append(yhat[0][0])
i = i+1
sta_temp_df[0] = np.log(temp_df[0])
cum_temp_df = np.exp(np.cumsum(sta_temp_df))
print(cum_temp_df)
My code is shown above. Would really appreciate if someone can identify what I did wrong here!

Loss function with derivative in TensorFlow 2

I am using TF2 (2.3.0) NN to approximate the function y which solves the ODE: y'+3y=0
I have defined cutsom loss class and function in which I am trying to differentiate the single output with respect to the single input so the equation holds, provided that y_true is zero:
from tensorflow.keras.losses import Loss
import tensorflow as tf
class CustomLossOde(Loss):
def __init__(self, x, model, name='ode_loss'):
super().__init__(name=name)
self.x = x
self.model = model
def call(self, y_true, y_pred):
with tf.GradientTape() as tape:
tape.watch(self.x)
y_p = self.model(self.x)
dy_dx = tape.gradient(y_p, self.x)
loss = tf.math.reduce_mean(tf.square(dy_dx + 3 * y_pred - y_true))
return loss
but running the following NN:
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras import Input
from custom_loss_ode import CustomLossOde
num_samples = 1024
x_train = 4 * (tf.random.uniform((num_samples, )) - 0.5)
y_train = tf.zeros((num_samples, ))
inputs = Input(shape=(1,))
x = Dense(16, 'tanh')(inputs)
x = Dense(8, 'tanh')(x)
x = Dense(4)(x)
y = Dense(1)(x)
model = Model(inputs=inputs, outputs=y)
loss = CustomLossOde(model.input, model)
model.compile(optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.99),loss=loss)
model.run_eagerly = True
model.fit(x_train, y_train, batch_size=16, epochs=30)
for now I am getting 0 loss from the fisrt epoch, which doesn't make any sense.
I have printed both y_true and y_test from within the function and they seem OK so I suspect that the problem is in the gradien which I didn't succeed to print.
Apprecitate any help
Defining a custom loss with the high level Keras API is a bit difficult in that case. I would instead write the training loop from scracth, as it allows a finer grained control over what you can do.
I took inspiration from those two guides :
Advanced Automatic Differentiation
Writing a training loop from scratch
Basically, I used the fact that multiple tape can interact seamlessly. I use one to compute the loss function, the other to calculate the gradients to be propagated by the optimizer.
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras import Input
num_samples = 1024
x_train = 4 * (tf.random.uniform((num_samples, )) - 0.5)
y_train = tf.zeros((num_samples, ))
inputs = Input(shape=(1,))
x = Dense(16, 'tanh')(inputs)
x = Dense(8, 'tanh')(x)
x = Dense(4)(x)
y = Dense(1)(x)
model = Model(inputs=inputs, outputs=y)
# using the high level tf.data API for data handling
x_train = tf.reshape(x_train,(-1,1))
dataset = tf.data.Dataset.from_tensor_slices((x_train,y_train)).batch(1)
opt = Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.99)
for step, (x,y_true) in enumerate(dataset):
# we need to convert x to a variable if we want the tape to be
# able to compute the gradient according to x
x_variable = tf.Variable(x)
with tf.GradientTape() as model_tape:
with tf.GradientTape() as loss_tape:
loss_tape.watch(x_variable)
y_pred = model(x_variable)
dy_dx = loss_tape.gradient(y_pred, x_variable)
loss = tf.math.reduce_mean(tf.square(dy_dx + 3 * y_pred - y_true))
grad = model_tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(grad, model.trainable_variables))
if step%20==0:
print(f"Step {step}: loss={loss.numpy()}")

Value Error due to Numpy returning an object

I'm trying to make the following code piece at the end run.
However, i'm getting the following error when i try to fit my model:
"ValueError: setting an array element with a sequence."
I'm trying to use a RNN to predict the next 5 days of prices. So, in the function create_ts I'm trying to create two time series, one with the first X items and another with X+1, X+2, X+3, X+4, and X+5 - these five items being the next five days of prices i'd like to predict.
I suspect the problem is here somewhere:
def create_ts(ds, series, day_gap):
x, y = [], []
for i in range(len(ds) - series - 1):
item = ds[i:(i+series),0]
x.append(item)
next_item = ds[i+series:(i+series+day_gap), 0]
y.append(next_item)
#print(type(np.array(x)), type(np.array(y)))
return np.array(x), np.array(y).reshape(-1,1)
series = 5
predict_days = 5
train_x, train_y = create_ts(stock_train, series, predict_days)
test_x, test_y = create_ts(stock_test, series, predict_days)
#reshape into LSTM format - samples, steps, features
train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
test_x = np.reshape(test_x, (test_x.shape[0], test_x.shape[1], 1))
#build model
model = Sequential()
model.add(LSTM(4,input_shape = (series, 1)))
model.add(Dense(1))
model.compile(loss='mse', optimizer = 'adam')
#fit model
model.fit(train_x, train_y, epochs = 100, batch_size = 32)
Thanks in advance for any help!
Below is the full code piece:
from keras import backend as k
import os
from importlib import reload
def set_keras_backend(backend):
if k.backend() != backend:
os.environ['KERAS_BACKEND'] = backend
reload(k)
assert k.backend() == backend
set_keras_backend("cntk")
import numpy as np
import pandas as pd
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import math
np.random.seed(7)
#load dataset
fileloc = "C:\\Stock Data\\CL1.csv"
stock_data = pd.read_csv(fileloc)
stock_data.head()
stock_data.dtypes
stock_data['Date'] = pd.to_datetime(stock_data['Date'])
stock_data['Price'] = pd.to_numeric(stock_data['Price'], downcast = 'float')
stock_data.set_index('Date', inplace=True)
stock_close = stock_data['Price']
stock_close = stock_close.values.reshape(len(stock_close), 1)
plt.plot(stock_close)
#normalize data
scaler = MinMaxScaler(feature_range = (0,1))
stock_close = scaler.fit_transform(stock_close)
#split data into a train, test set
train_size = int(len(stock_close)*0.7)
test_size = len(stock_close) - train_size
stock_train, stock_test = stock_close[0:train_size, :], stock_close[train_size:len(stock_close), :]
#convert the data into a time series looking back over a period fo days
def create_ts(ds, series, day_gap):
x, y = [], []
for i in range(len(ds) - series - 1):
item = ds[i:(i+series),0]
x.append(item)
next_item = ds[i+series:(i+series+day_gap), 0]
y.append(next_item)
#print(type(np.array(x)), type(np.array(y)))
return np.array(x), np.array(y).reshape(-1,1)
series = 5
predict_days = 5
train_x, train_y = create_ts(stock_train, series, predict_days)
test_x, test_y = create_ts(stock_test, series, predict_days)
#reshape into LSTM format - samples, steps, features
train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
test_x = np.reshape(test_x, (test_x.shape[0], test_x.shape[1], 1))
#build model
model = Sequential()
model.add(LSTM(4,input_shape = (series, 1)))
model.add(Dense(1))
model.compile(loss='mse', optimizer = 'adam')
#fit model
model.fit(train_x, train_y, epochs = 100, batch_size = 32)

LSTM to predict sine wave

Here I would like to generate a tutorial usage of LSTM in MxNet, with the example for Tensorflow. (location at https://github.com/mouradmourafiq/tensorflow-lstm-regression/blob/master/lstm_sin.ipynb"
Here is my major code
import mxnet as mx
import numpy as np
import pandas as pd
import argparse
import os
import sys
from data_processing import generate_data
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
TIMESTEPS = 3
BATCH_SIZE = 100
X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
train_iter = mx.io.NDArrayIter(X['train'], y['train'], batch_size=BATCH_SIZE, shuffle=True, label_name='lro_label')
eval_iter = mx.io.NDArrayIter(X['val'], y['val'], batch_size=BATCH_SIZE, shuffle=False)
test_iter = mx.io.NDArrayIter(X['test'], batch_size=BATCH_SIZE, shuffle=False)
num_layers = 3
num_hidden = 50
data = mx.sym.Variable('data')
label = mx.sym.Variable('lro_label')
stack = mx.rnn.SequentialRNNCell()
for i in range(num_layers):
stack.add(mx.rnn.LSTMCell(num_hidden=num_hidden, prefix='lstm_l%d_'%i))
#stack.reset()
outputs, states = stack.unroll(length=TIMESTEPS,
inputs=data,
layout='NTC',
merge_outputs=True)
outputs = mx.sym.reshape(outputs, shape=(BATCH_SIZE, -1))
# purpose of fc1 was to make shape change to (batch_size, *), or label shape won't match LSTM unrolled output shape.
outputs = mx.sym.FullyConnected(data=outputs, num_hidden=1, name='fc1')
label = mx.sym.reshape(label, shape=(-1,))
outputs = mx.sym.LinearRegressionOutput(data=outputs,
label=label,
name='lro')
contexts = mx.cpu(0)
model = mx.mod.Module(symbol = outputs,
data_names = ['data'],
label_names = ['lro_label'])
model.fit(train_iter, eval_iter,
optimizer_params = {'learning_rate':0.005},
num_epoch=4,
batch_end_callback=mx.callback.Speedometer(BATCH_SIZE, 2))
This code runs but the train_accuracy is Nan.
The question is how to make it correct?
And since unrolled out shape has sequence_length, how can it match to label shape? Did my FC1 net make sense?
pass auto_reset=False to Speedometer callback, say, batch_end_callback=mx.callback.Speedometer(BATCH_SIZE, 2, auto_reset=False), should fix the NaN train-acc.