Count the number of keys that start with string - redis

I've two different types of keys saved, one prefixed with response, and another uuid. I want to count the number of keys that start with uuid. According to this answer, it's possible to filter keys using MATCH but is it possible to get a count?

There's no operation in Redis to get a count given a particular prefix. Here are a couple of ideas for you:
If you're only storing Strings, you can use a Hash instead to keep track of everything, in this case, your UUID's would be fields in the hash rather than strings, but they are effectively equivalent. This would permit you to use the HLEN Command to see how many UUIDs you have. This would effectively be an O(1) solution - and has the added benefit of not relying on a separate counter key
Keep a uuid_coutner key, whenever a new UUID is added just use INCR, if one is removed, simply use DECR. Can use INCRBY/DECRBY if you add/remove more than 1 at a time. This would effectively be an O(1) solution, but of course, the counter/keys are stored independently from each other.
You can of course use the post you alluded to (a scan over all of your keys) to count them as well, but that is both O(n) and will incur a lot of unecessary traffic.

Related

Is using a timestamp as a hash key on a GSI in DynamoDB a good approach

I have a large (2B + records) DynamoDB table.
I want to implement a distributed locking process by adding a new field, 'index_due_at' when an item is created or updated. After the create/update, I will do some further processing on the item and then remove the 'index_due_at' field.
I'd like to create a sweeper job which will periodically extract any records with an outstanding 'index_due_at' field (on the assumption that something about the above process failed) to give those records further treatment. I would anticipate at most 100s of records in this state at any one time, more likely 10s.
To optimise the performance of the sweeper, I want to create a GSI including the new field (and project the key data into it).
It seems that using a timestamp (in millis) as the GSI HASH key ought to give a good distribution. And I don't need to query on this field's value, just on its presence. Can anyone identify any drawbacks in this approach and if so, suggest an alternative?
Issues I can anticipate include:
* Non-uniqueness in timestamps at milli level.
* Possible hash key problems with numeric values?
* Possible hash key problems with numeric values that don't vary much in the most significant digits.
This is less of a problem than you might be thinking. GSI hash keys don't actually have to be unique, so you're fine on than front.
You probably already know this, but your GSI will only contain items with GSI keys, so your GSI should be pretty small (100s of items).
One thought I have is that the index_due_at might actually be better as a GSI sort key rather than hash key. Data is sorted within a partition by sort key. So you could have a GSI hash key of index_due_at_flag which would be Y if present, then a sort key of index_due_at. This would mean all your data would be sorted naturally, so you could process it in date order.
That said, you are probably never going to Query this GSI, so I suspect your choice of keys hardly matters at all. Presumably you will just do a Scan, get all the items and try and process them all. In which case you would never even use the keys. Just having a key attribute present would put the item in the GSI.
Another thought is that you need to handle the fact GSIs are not perfectly synchronous with the base table. Its possible (admittedly unlikely) that an item in your GSI has actually just been processed. Therefore if your sweeper script picks up an item from the GSI, you should handle the fact its possible its already been updated in the base table (e.g. by checking the base table item before attempting to process it).
Good luck with it. I answered because I liked your bio! Hope staying on the right side of barrel shaped is working out :)
This should be a perfect scenario for using DynamoDB Sparse Index
Use the 'index_due_at' as sort key in GSI, and only the items you are interested will be in the index, greatly reducing the space needed and the performance.

Use set or just create keys in redis to check existence?

I can think of two ways of checking existence using redis:
Use the whole database as a 'set', and just SET a key and checking existence by GETing it (or using EXISTS as mentioned in the comment by #Sergio Tulentsev)
Use SADD to add all members to a key and check existence by SISMEMBER
Which one is better? Will it be a problem, compared to the same amount of keys in a single set, if I choose the first method and the number of keys in a database gets larger?
In fact, besides these two methods, you can also use the HASH data structure with HEXISTS command (I'll call this method as the third solution).
All these solutions are fast enough, and it's NOT a problem if you have a large SET, HASH, or keyspace.
So, which one should we use? It depends on lots of things...
Does the key has value?
Keys of both the first and the third solution can have value, while the second solution CANNOT.
So if there's no value for each key, I'd prefer the second solution, i.e. SET solution. Otherwise, you have to use the first or third solution.
Does the value has structure?
If the value is NOT raw string, but a data structure, e.g. LIST, SET. You have to use the first solution, since HASH's value CAN only be raw string.
Do you need to do set operations?
If you need to do intersection, union or diff operations on multiple data sets, you should use the second solution. Redis has built-in commands for these operations, although they might be slow commands.
Memory efficiency consideration
Redis takes more memory-efficient encoding for small SET and HASH. So when you have lots of small data sets, take the second and the third solution can save lots of memory. See this for details.
UPDATE
Do you need to set TTL for these keys?
As #dizzyf points out in the comment, if you need to set TTL for these keys, you have to use the first solution. Because items of HASH and SET DO NOT have expiration property. You can only set TTL for the entire HASH or SET, NOT their elements.

Out of Process in memory database table that supports queries for high speed caching

I have a SQL table that is accessed continually but changes very rarely.
The Table is partitioned by UserID and each user has many records in the table.
I want to save database resources and move this table closer to the application in some kind of memory cache.
In process caching is too memory intensive so it needs to be external to the application.
Key Value stores like Redis are proving inefficient due to the overhead of serializing and deserializing the table to and from Redis.
I am looking for something that can store this table (or partitions of data) in memory, but let me query only the information I need without serializing and deserializing large blocks of data for each read.
Is there anything that would provide Out of Process in memory database table that supports queries for high speed caching?
Searching has shown that Apache Ignite might be a possible option, but I am looking for more informed suggestions.
Since it's out-of-process, it has to do serialization and deserialization. The problem you concern is how to reduce the serialization/deserizliation work. If you use Redis' STRING type, you CANNOT reduce these work.
However, You can use HASH to solve the problem: mapping your SQL table to a HASH.
Suppose you have the following table: person: id(varchar), name(varchar), age(int), you can take person id as key, and take name and age as fields. When you want to search someone's name, you only need to get the name field (HGET person-id name), other fields won't be deserialzed.
Ignite is indeed a possible solution for you since you may optimize serialization/deserialization overhead by using internal binary representation for accessing objects' fields. You may refer to this documentation page for more information: https://apacheignite.readme.io/docs/binary-marshaller
Also access overhead may be optimized by disabling copy-on-read option https://apacheignite.readme.io/docs/performance-tips#section-do-not-copy-value-on-read
Data collocation by user id is also possible with Ignite: https://apacheignite.readme.io/docs/affinity-collocation
As the #for_stack said, Hash will be very suitable for your case.
you said that Each user has many rows in db indexed by the user_id and tag_id . So It is that (user_id, tag_id) uniquely specify one row. Every row is functional depends on this tuple, you could use the tuple as the HASH KEY.
For example, if you want save the row (user_id, tag_id, username, age) which values are ("123456", "FDSA", "gsz", 20) into redis, You could do this:
HMSET 123456:FDSA username "gsz" age 30
When you want to query the username with the user_id and tag_id, you could do like this:
HGET 123456:FDSA username
So Every Hash Key will be a combination of user_id and tag_id, if you want the key to be more human readable, you could add a prefix string such as "USERINFO". e.g. : USERINFO:123456:FDSA .
BUT If you want to query with only a user_id and get all rows with this user_id, this method above will be not enough.
And you could build the secondary indexes in redis for you HASH.
as the above said, we use the user_id:tag_id as the HASH key. Because it can unique points to one row. If we want to query all the rows about one user_id.
We could use sorted set to build a secondary indexing to index which Hashes store the info about this user_id.
We could add this in SortedSet:
ZADD user_index 0 123456:FDSA
As above, we set the member to the string of HASH key, and set the score to 0. And the rule is that we should set all score in this zset to 0 and then we could use the lexicographical order to do range query. refer zrangebylex.
E.g. We want to get the all rows about user_id 123456,
ZRANGEBYLEX user_index [123456 (123457
It will return all the HASH key whose prefix are 123456, and then we use this string as HASH key and hget or hmget to retrieve infomation what we want.
[ means inclusive, and ( means exclusive. and why we use 123457? it is obvious. So when we want to get all rows with a user_id, we shoud specify the upper bound to make the user_id string's leftmost char's ascii value plus 1.
More about lex index you could refer the article I mentioned above.
You can try apache mnemonic started by intel. Link -http://incubator.apache.org/projects/mnemonic.html. It supports serdeless features
For a read-dominant workload MySQL MEMORY engine should work fine (writing DMLs lock whole table). This way you don't need to change you data retrieval logic.
Alternatively, if you're okay with changing data retrieval logic, then Redis is also an option. To add to what #GuangshengZuo has described, there's ReJSON Redis dynamically loadable module (for Redis 4+) which implements document-store on top of Redis. It can further relax requirements for marshalling big structures back and forth over the network.
With just 6 principles (which I collected here), it is very easy for a SQL minded person to adapt herself to Redis approach. Briefly they are:
The most important thing is that, don't be afraid to generate lots of key-value pairs. So feel free to store each row of the table in a different key.
Use Redis' hash map data type
Form key name from primary key values of the table by a separator (such as ":")
Store the remaining fields as a hash
When you want to query a single row, directly form the key and retrieve its results
When you want to query a range, use wild char "*" towards your key. But please be aware, scanning keys interrupt other Redis processes. So use this method if you really have to.
The link just gives a simple table example and how to model it in Redis. Following those 6 principles you can continue to think like you do for normal tables. (Of course without some not-so-relevant concepts as CRUD, constraints, relations, etc.)
using Memcache and REDIS combination on top of MYSQL comes to Mind.

Redis PFADD to check a exists-in-set query

I have a requirement to process multiple records from a queue. But due to some external issues the items may sporadically occur multiple times.
I need to process items only once
What I planned to use is PFADD into redis every record ( as a md5sum) and then see if that returns success. If that shows no increment then the record is a duplicate else process the record.
This seems pretty straightforward , but I am getting too many false positives while using PFADD
Is there a better way to do this ?
Being the probabilistic data structure that it is, Redis' HyperLogLog exhibits 0.81% standard error. You can reduce (but never get rid of) the probability for false positives by using multiple HLLs, each counting a the value of a different hash function on your record.
Also note that if you're using a single HLL there's no real need to hash the record - just PFADD as is.
Alternatively, use a Redis Set to keep all the identifiers/hashes/records and have 100%-accurate membership tests with SISMEMBER. This approach requires more (RAM) resources as you're storing each processed element, but unless your queue is really huge that shouldn't be a problem for a modest Redis instance. To keep memory consumption under control, switch between Sets according to the date and set an expiry on the Set keys (another approach is to use a single Sorted Set and manually remove old items from it by keeping their timestamp in the score).
In general in distributed systems you have to choose between processing items either :
at most once
at least once
Processing something exactly-once would be convenient however this is generally impossible.
That being said there could be acceptable workarounds for your specific use case, and as you suggest storing the items already processed could be an acceptable solution.
Be aware though that PFADD uses HyperLogLog, which is fast and scales but is approximate about the count of the items, so in this case I do not think this is what you want.
However if you are fine with having a small probability of errors, the most appropriate data structure here would be a Bloom filter (as described here for Redis), which can be implemented in a very memory-efficient way.
A simple, efficient, and recommended solution would be to use a simple redis key (for instance a hash) storing a boolean-like value ("0", "1" or "true", "false") for instance with the HSET or SET with the NX option instruction. You could also put it under a namespace if you wish to. It has the added benefit of being able to expire keys also.
It would avoid you to use a set (not the SET command, but rather the SINTER, SUNION commands), which doesn't necessarily work well with Redis cluster if you want to scale to more than one node. SISMEMBER is still fine though (but lacks some features from hashes such as time to live).
If you use a hash, I would also advise you to pick a hash function that has fewer chances of collisions than md5 (a collision means that two different objects end up with the same hash).
An alternative approach to the hash would be to assign an uuid to every item when putting it in the queue (or a squuid if you want to have some time information).

Using key-value databases as a set with persistent indices

Since the below got a bit long: Here's the tl;dr; version: Is there an existing key/value best-practice for fast key and value lookup, something like a hash-based set with persistent indices?
I'm interested in the world of key-value databases and have so far failed to figure out how one would efficiently implement the following use-case:
Assume we want to serialize some data and reference them somewhere else by a persistent, unique integer index. Thus e.g.: Key = unsigned int, Value = MyData.
The database should have fast key lookup and ensure that MyData is unique.
Now, when I insert a new value into my the database, I could assign it a new index key, e.g. the current size of the database or to prevent clashes after removing items, I could keep some counter externally.
But how would I ensure that I do not insert the same MyData value into my database? So far, it looks to me as if this is not efficiently possible with key-value databases - is this correct? I.e. I do not want to iterate over the whole database just to ensure MyData value is not in there already...
What is the best pratice to implement this, then?
For background: I work on KDevelop where we use the above for our code analysis cache. We actually have a custom implementation of the above use-case 1. Search for Bucket and ItemRepository if you are interested in the internals, and see 2 for an examplatory usage of the ItemRepository.
But you will probably agree, that this code is quite hard to understand and thus hard to maintain. I want to compare its performance to alternative solutions which might result in simpler code - but only if it does not incur a severe performance penalty. Considering the hype around the performance of key-value storages such as OpenLDAP MDB, Kyoto Cabinet and LevelDB, this is where I wanted to start.
What we have in KDevelop - as far as I figured out - is basically a sort of hybrid on-disk/in-memory hash map which gets saved to disk periodically (which of course can result in major data corruption in case of crashes etc.). Items are stored in a location based on their hash value which then of course also allows relatively fast value lookups as long as the hash function is fast. The added twist is that you also get some sort of persistent database index which can be used to lookup the items quite efficiently.
So - long story short - how would one do that with a key/value database such as LevelDB, Kyoto Cabinet, OpenLDAP MDB - you name it?
Sounds like you want to do what OpenLDAP does with its Equality index. Perhaps this is the same as the OrientDB example, I didn't read it.
The main table is indexed by a monotonically increasing integer key (called the entryID), and stores the data value. The equality index is indexed by a hash of the value, and stores a list of entryIDs that match the hash. Since the hash might have collisions, just the existence of an entry in the equality index doesn't prove uniqueness or duplication. You still need to check the actual values.
A faster/simpler approach, if you're using MDB, BDB, or some other database that supports duplicate keys, is to just keep one table, using the hash as the key. In both MDB and BDB there is a GET_BOTH request which matches both the key and the data to perform a fetch. If it succeeds then you know for certain that the value already exists. Otherwise, it allows you to save whatever data values and not worry whether or not there are hash collisions.
A caveat here, in MDB using duplicate keys, the size of the values is limited to less than one half of a disk page.
Unless I'm missing something here - typically your hash algorithm is consistent and will provide the same key for the same data. Thus you should only need to look up the key to see if it already exists, or handle the (likely duplicate key) error the DB gives back to you.
afaik Key/Value DBs can and will enforce a unique Value constraint for you i.e. you will get an error if you try and save a value that already exists.
How big are your value strings?
I would just store them in a key and let the database do all the work.
Typical LevelDB style, which applies to most KV stores, would be to use a pair of keys, prefixed to indicate type
eg:
Key = 'i' + ID
Value = valueString
Key = 'v' + valueString
Value = ID
In a system that needs to allow for multiple identical valueStrings you would move the ID into the tail of the second key
Key = 'v' + valueString + ID
Value = empty