I am working on a use case which is a combination between the Nurse Rostering example and a VRP problem. In isolation, I understand and can tweak both to a certain extent, but I'm not quite sure how to merge them.
To illustrate my use case further, I am trying to schedule nurses (considering skills, contract, and preferences) to patients homes, located within a 20-40 mile radius.
As an example, a nurse with the "insulin" skill would need to travel to a patient, arriving within a certain time window, perform a task for 15 mins, then travel to another patient, perform the same task, and continue until its 8 hour shift is complete. There are multiple skills and tasks to be considered.
I reviewed the Nurse Rostering example and it is a great fit for my use case, but I don't see how to modify it to account for traveling between "shift locations". The VRPTW example is again a great fit, but it does not account for skills, contracts, and preferences.
Any thoughts on how to go about modelling this problem would be highly appreciated.
Even if my answer can possibly be still too general for you to use, I would combine both models in a way more or less similar to the following :
use the nurse rostering example's model as the start point
in that model, include all intervention locations's properties; this includes at least : the intervention location data, the time window in which to intervene at the location, and the needed skill(s) needed to do the intervention locally
combine both model's constraints, not to forget at least the constraint(s) penalising a visit to a location with an insufficient skillset (sounds like a hard constraint) and the constraint(s) penalising lengthy travel times/distances.
I also suspect a more intensive usage of the shadow variables due to the combination of both models.
May still sound too vague, but that would be the direction where I would work towards.
Related
I am new to OptPlanner but I have a reasonable understanding of constraint solving alebit somewhat dated.
I have a problem I want to model. On the one hand the National Grid have requirements to save electricity between defined time slots on specific days in specific locations (post codes). On the other individuals with static or mobile batteries charge their batteries at some point during a 24 hour cycle and have a need to get a specific amount of charge into those batteries. I need to model a set of constraints at the top (the grid) and the constraints at the bottom (the individuals) to ensure the individuals get what they need and the grid saves what it requires.
What model should I pick and why?
I am just starting this so I have not tried anything yet. I would prefer a Java/SpringBoot solution.
Many thanks for any help.
Steve T
First read the domain modeling guide in the docs to understand my answer below.
https://www.optaplanner.org/docs/optaplanner/latest/design-patterns/design-patterns.html#domainModelingGuide
I think the maintenance scheduling quickstart might be a good start. Code is here:
https://github.com/kiegroup/optaplanner-quickstarts/tree/stable/use-cases/maintenance-scheduling
Motivation: it sounds like there could be gaps between charging at the charging stations, so a chained through time model does not fit. You're not solving a VRP anyway. So I suspect a timegrain model it is, which is what the maintenance scheduling quickstart actually uses.
I have been started to learn Opataplanner for sometime, I try to figure out a model design for my use case to progress the solution calculation, here is my case in real world in manufactory's production line:
There is a working order involved list of sequential processes
Each kind of machine can handle fixed types of processes.(assume machine quantity are enough)
The involved team has a number of available employees, each employee has the skills for set of processes with their different own working cost time
production line has fixed number of stations available
each station put one machine/employee or leave empty
question: how to design the model to calculate the maximum output of completion product in one day.
confusion: in the case, the single station will have one employee and one machined populated, and specified dynamic processed to be working on. but the input of factors are referred by each other and dynamic: employee => processes skill , process skill => machines
can please help to guide how to design the models?
Maybe some of the examples are close to your requirements. See their docs here. Specifically the task assignment, cheap time scheduling or project job scheduling examples.
Otherwise, follow the domain modeling guidelines.
I'm working on the project where university course is represented as a to-do list, where:
course owner (teacher of the course) can add tasks (containing the URL to the resource needs to be learned and two datetime fields - when to start and when to complete the task)
course subscriber (student) can mark tasks as complete or not complete and their marks are saved individually for each account.
If student marks task as complete - his account + element he marked are shown in the course activity tab for teacher where he can:
initiate a conversation in JavaScript-based chat with him
evaluate the result of the conversation
What optimization algorithm you could recommend me to use for timetable rescheduling (changing datetime fields for to-do element if student procrastinates) here?
Actually, we can use the student activity on the resource + fact that he marked the task as complete + if he clicked or not on the URL placed on the to-do element leading to the external learning material (for example Google Book).
For example, are genetic algorithms suitable for this model and what pitfalls do they have: https://medium.com/#vijinimallawaarachchi/time-table-scheduling-2207ca593b4d ?
I'm not sure I completely understand your problem but it sounds like you have a feasible timetable to begin with and you just need to improve it.
If so genetic algorithms will work very well, but I think representing everything as binary 'chromosomes' like in the link might not be practical.
There are many other ways you can represent a timetable, such as in a 2D array, or giving an event a slot number.
You could look into algorithms such as Tabu search, Simulated Annealing and Great Deluge and Hill Climbing. They are all based on similar ideas but some work better with some problems than others. For example if you have a very rough search space simulated annealing won't be the best and Hill Climbing usually only finds a local optimum.
The general architecture of the algorithms mentioned above and many other genetic algorithms and Metaheuristics is: select a neighbouring solution using a move operator (e.g. swapping the time of one or two or three events or swapping the rooms of two events etc...), check the move doesn't violate any hard constraints, use an acceptance strategy such as, simulated annealing or Great Deluge, to determine if the move is accepted. If it is keep the solution and repeat the steps until the termination criterion is met. This can be max time, number of iterations reached or improving move hasn't been found in x number of iterations.
Whilst this is running keep a log of the 'best' solution so when the algorithm is terminated you have the best solution found. You can determine what is considered 'best' based on how many soft constraints the timetable violates
Hope this helps!
I'm developing a solver for a VRPTW problem using the OptaPlanner and I have faced a problem when large number of customers need to be serviced. By the large number I mean up to 10,000 customers. I have tried running a solver for about 48 hours but no feasible solution was ever reached.
I use a highly customized VRPTW domain model that introduces additional planning entity so-called "Workbreak". Workbreaks are like customers but they can have a location that is actually another planning value - because every day a worker can return home or go to the hotel. Workbreaks have fixed time of departure (usually next day morning), and a variable time of arrival (because it depends on the previous entity within a chain). A hard constraint cares about not allowing to "arrive" to the Workbreak after certain point of time. There are other hard constraints too, like:
multiple service time windows per customer
every week the last customer in chain must be a special customer "storage space visit" (workers need to gather materials before the next week)
long jobs management (when a customer needs to be serviced longer than specified time it should be serviced before specific hour of a day)
max number of jobs per workday
max total job duration per workday (as worker cannot work longer than specified time)
a workbreak cannot have a location of a hotel that is too close to worker's home.
jobs can not be serviced on Sundays
... and many more - there is a total number of 19 hard constrains that have to be applied. There are 3 soft constraints too.
All the aforementioned constraints were initially written as Drools rules, but because of many accumulation-based constraints (max jobs per day, max hours per day, overtime hours per week) the overall speed of the solver (benchmarks) was about 400 step/sec.
At first I thought that solver's speed is too slow to reach a feasible solution in a reasonable time, so I have rewritten all rules into easy score calculator, and it had a decent speed - about 4600 steps/sec. I knew that is will only perform best for a really small number of customers, but I wanted to know if the Drools was the cause of that poor performance. Then I have rewritten all these rules into incremental score calculator (and survived the pain of corrupted score bugs until all of them were successfully fixed). Surprisingly incremental score calculation is a bit slower for a small number of customers, comparing to easy score calculator, but it is not an issue, because overall speed is about 4000 steps/sec - no matter how many entities I have.
The thing that bugs me the most is that above a certain number of customers (problems start at 1000 customers) the solver cannot reach feasible solution. Currently I'm using Late Acceptance and Step Counting algorithms, because they perform really good for this kind of a problem (at least for a less number of customers). I used Simulated Annealing too, but without success, mostly because I could not find good values for algorithm specific parameters.
I have implemented some custom moves too:
Composite move that changes workbreak's location when sibling entities are changed using other moves like change/swap moves (it helps escaping many score traps, as improving step usually needs at least two moves to be performed in a single step)
Move factory for better long jobs assignment (it generates moves that tries to put customers with longer service time in the front of a workday chain)
Workbreak assignment move factory (it generates moves that helps putting workbreaks in proper sequence)
Now I'm scratching my head, and wondering what I should do to diagnose the source of my problem. I suspected that maybe it was hitting a score trap, but I have modified the solver so it saves snapshots of best score each minute. After reading these snapshots I realized that the score was still decreasing. Can the number of hard constraints play the role? I suspect that many moves need to be performed to find out a move that improves the score. The fact is that maybe 48 hours isn't that much for this kind of a problem, and it should make computations a whole week? Unfortunately I have nothing to compare with.
I would like to know how to find out if it is solely a performance problem, or a solver (algorithm, custom moves, hard/soft score) configuration problem.
I really apologize for my bad English.
TL;DR but FWIW:
To scale above 1k locations you need to use NearBy selection.
To scale above 10k locations, add Partitioned Search too.
Tried doing a bit of research on the following with no luck. Thought I'd ask here in case someone has come across it before.
I help a volunteer-run radio station with their technology needs. One of the main things that have come up is they would like to schedule their advertising programmatically.
There are a lot of neat and complex rule engines out there for advertising, but all we need is something pretty simple (along with any experience that's worth thinking about).
I would like to write something in SQL if possible to deal with these entities. Ideally if someone has written something like this for other advertising mediums (web, etc.,) it would be really helpful.
Entities:
Ads (consisting of a category, # of plays per day, start date, end date or permanent play)
Ad Category (Restaurant, Health, Food store, etc.)
To over-simplify the problem, this will be a elegant sql statement. Getting there... :)
I would like to be able to generate a playlist per day using the above two entities where:
No two ads in the same category are played within x number of ads of each other.
(nice to have) high promotion ads can be pushed
At this time, there are no "ad slots" to fill. There is no "time of day" considerations.
We queue up the ads for the day and go through them between songs/shows, etc. We know how many per hour we have to fill, etc.
Any thoughts/ideas/links/examples? I'm going to keep on looking and hopefully come across something instead of learning it the long way.
Very interesting question, SMO. Right now it looks like a constraint programming problem because you aren't looking for an optimal solution, just one that satisfies all the constraints you have specified. In response to those who wanted to close the question, I'd say they need to check out constraint programming a bit. It's far closer to stackoverflow that any operations research sites.
Look into constraint programming and scheduling - I'll bet you'll find an analogous problem toot sweet !
Keep us posted on your progress, please.
Ignoring the T-SQL request for the moment since that's unlikely to be the best language to write this in ...
One of my favorites approaches to tough 'layout' problems like this is Simulated Annealing. It's a good approach because you don't need to think HOW to solve the actual problem: all you define is a measure of how good the current layout is (a score if you will) and then you allow random changes that either increase or decrease that score. Over many iterations you gradually reduce the probability of moving to a worse score. This 'simulated annealing' approach reduces the probability of getting stuck in a local minimum.
So in your case the scoring function for a given layout might be based on the distance to the next advert in the same category and the distance to another advert of the same series. If you later have time of day considerations you can easily add them to the score function.
Initially you allocate the adverts sequentially, evenly or randomly within their time window (doesn't really matter which). Now you pick two slots and consider what happens to the score when you switch the contents of those two slots. If either advert moves out of its allowed range you can reject the change immediately. If both are still in range, does it move you to a better overall score? Initially you take changes randomly even if they make it worse but over time you reduce the probability of that happening so that by the end you are moving monotonically towards a better score.
Easy to implement, easy to add new 'rules' that affect score, can easily adjust run-time to accept a 'good enough' answer, ...
Another approach would be to use a genetic algorithm, see this similar question: Best Fit Scheduling Algorithm this is likely harder to program but will probably converge more quickly on a good answer.