I wanna convert this if statement to linear equation.
for i,j -> 1 to n
if D[i]>D[j] and f[i] > s[j] then w[i]+=c[j]
The line below is what has come to my mind so far, but I do not know how to write the rest. C(j) has to be multiplied by a phrase (that phrase is a code condition)
If the result of that phrase (in parentheses below) was 1, add C(j) to w(j) and if it was 0, do not add it to w(j).
Can you tell me how to write that condition in such a way that if the condition is true, it becomes 1, and if the condition is false, it become 0?
sum( j, c[j]*(?) )
What do you refer for "to be multiplied by a phrase"? Phrase is a parameter or a variable in the model? C(j) is data or is a variable? Depending on your answer, you should add binary variables to your model to register the result of that phrase and then you have to formulate the conditional sum of c(j) and w(j) depending on that binary variable.
Related
Hello fellows, i am learning Julia and integer programing but i am stuck at one point
How to model "then" in julia-jump for integer programing leanring.
Stuck here here
#Define the variables of the model
#variable(mo, x[1:N,1:S], Bin)
#variable(mo, a[1:S]>=0)
#Assignment constraint
#constraint(mo, [i=1:N], sum(x[i,j] for j=1:S) == 1)
##constraint (mo, PLEASE HELP )
In cases like this you usually need to use Big-M constraints
So this will be:
a_ij >= s_i^2 - M*(1-x_ij)
where M is a "big enough" number. This means that if x_ij == 0 the inequality will always be true (and hence kind of turned-off). On the other hand when x_ij == 1 the M-part will be zeroed and the equation will hold.
In JuMP terms the code will look like this:
const M = 10_000
#constraint(mo, [i=1:N, j=1:S], a[i, j] >= s[i]^2 - M*(1 - x[i, j]))
However, if s[i] is an external parameter rather than model variable you could simply use x[i,j] <= a[j]/s[i]^2 proposed by #DanGetz. However when s[i] is #variable you really want to avoid dividing or multiplying variables by each other. So this big M approach is more general across use cases.
I'm working on this weeks PerlWChallenge.
You are given an array of integers #A. Write a script to create an
array that represents the smaller element to the left of each
corresponding index. If none found then use 0.
Here's my approach:
my #A = (7, 8, 3, 12, 10);
my $L = #A.elems - 1;
say gather for 1 .. $L -> $i { take #A[ 0..$i-1 ].grep( * < #A[$i] ).min };
Which kinda works and outputs:
(7 Inf 3 3)
The Infinity obviously comes from the empty grep. Checking:
> raku -e "().min.say"
Inf
But why is the minimum of an empty Seq Infinity? If anything it should be -Infinity. Or zero?
It's probably a good idea to test for the empty sequence anyway.
I ended up using
take .min with #A[ 0..$i-1 ].grep( * < #A[$i] ) or 0
or
take ( #A[ 0..$i-1 ].grep( * < #A[$i] ) or 0 ).min
Generally, Inf works out quite well in the face of further operations. For example, consider a case where we have a list of lists, and we want to find the minimum across all of them. We can do this:
my #a = [3,1,3], [], [-5,10];
say #a>>.min.min
And it will just work, since (1, Inf, -5).min comes out as -5. Were min to instead have -Inf as its value, then it'd get this wrong. It will also behave reasonably in comparisons, e.g. if #a.min > #b.min { }; by contrast, an undefined value will warn.
TL;DR say min displays Inf.
min is, or at least behaves like, a reduction.
Per the doc for reduction of a List:
When the list contains no elements, an exception is thrown, unless &with is an operator with a known identity value (e.g., the identity value of infix:<+> is 0).
Per the doc for min:
a comparison Callable can be specified with the named argument :by
by is min's spelling of with.
To easily see the "identity value" of an operator/function, call it without any arguments:
say min # Inf
Imo the underlying issue here is one of many unsolved wide challenges of documenting Raku. Perhaps comments here in this SO about doc would best focus on the narrow topic of solving the problem just for min (and maybe max and minmax).
I think, there is inspiration from
infimum
(the greatest lower bound). Let we have the set of integers (or real
numbers) and add there the greatest element Inf and the lowest -Inf.
Then infimum of the empty set (as the subset of the previous set) is the
greatest element Inf. (Every element satisfies that is smaller than
any element of the empty set and Inf is the greatest element that
satisfies this.) Minimum and infimum of any nonempty finite set of real
numbers are equal.
Similarly, min in Raku works as infimum for some Range.
1 ^.. 10
andthen .min; #1
but 1 is not from 1 ^.. 10, so 1 is not minimum, but it is infimum
of the range.
It is useful for some algorithm, see the answer by Jonathan
Worthington or
q{3 1 3
-2
--
-5 10
}.lines
andthen .map: *.comb( /'-'?\d+/ )».Int # (3, 1, 3), (-2,), (), (-5, 10)
andthen .map: *.min # 1,-2,Inf,-5
andthen .produce: &[min]
andthen .fmt: '%2d',',' # 1,-2,-2,-5
this (from the docs) makes sense to me
method min(Range:D:)
Returns the start point of the range.
say (1..5).min; # OUTPUT: «1»
say (1^..^5).min; # OUTPUT: «1»
and I think the infinimum idea is quite a good mnemonic for the excludes case which also could be 5.1^.. , 5.0001^.. etc.
I've come across this code at RosettaCode
constant #primes = 2, 3, { first * %% none(#_), (#_[* - 1], * + 2 ... Inf) } ... Inf;
say #primes[^10];
Inside the explicit generator block:
1- What or which sequence do the #_ s refer to?
2- What does the first * refer to?
3- What do the * in #_[* - 1] and the next * refer to?
4- How does the sequence (#_[* - 1], * + 2 ... Inf) serve the purpose of finding prime numbers?
Thank you.
The outer sequence operator can be understood as: start the sequence with 2 and 3, then run the code in the block to work out each of the following values, and keep going until infinity.
The sequence operator will pass that block as many arguments as it asks for. For example, the Fibonacci sequence is expressed as 1, 1, * + * ... Inf, where * + * is shorthand for a lambda -> $a, $b { $a + $b }; since this wishes for two parameters, it will be given the previous two values in the sequence.
When we use #_ in a block, it's as if we write a lambda like -> *#_ { }, which is a slurpy. When used with ..., it means that we wish to be passed all the previous values in the sequence.
The sub first takes a predicate (something we evaluate that returns true or false) and a list of values to search, and returns the first value matching the predicate. (Tip for reading things like this: whenever we do a call like function-name arg1, arg2 then we are always parsing a term for the argument, meaning that we know the * cannot be a multiplication operator here.)
The predicate we give to first is * %% none(#_). This is a closure that takes one argument and checks that it is divisible by none of the previous values in the sequence - for if it were, it could not be a prime number!
What follows, #_[* - 1], * + 2 ... Inf, is the sequence of values to search through until we find the next prime. This takes the form: first value, how to get the next value, and to keep going until infinity.
The first value is the last prime that we found. Once again, * - 1 is a closure that takes an argument and subtracts 1 from it. When we pass code to an array indexer, it is invoked with the number of elements. Thus #arr[* - 1] is the Raku idiom for "the last thing in the array", #arr[* - 2] would be "the second to last thing in the array", etc.
The * + 2 calculates the next value in the sequence, and is a closure that takes an argument and adds 2 to it. While we could in fact just do a simple range #_[* - 1] .. Inf and get a correct result, it's wasteful to check all the even numbers, thus the * + 2 is there to produce a sequence of odd numbers.
So, intuitively, this all means: the next prime is the first (odd) value that none of the previous primes divide into.
Given an integer n such that (1<=n<=10^18)
We need to calculate f(1)+f(2)+f(3)+f(4)+....+f(n).
f(x) is given as :-
Say, x = 1112222333,
then f(x)=1002000300.
Whenever we see a contiguous subsequence of same numbers, we replace it with the first number and zeroes all behind it.
Formally, f(x) = Sum over all (first element of the contiguous subsequence * 10^i ), where i is the index of first element from left of a particular contiguous subsequence.
f(x)=1*10^9 + 2*10^6 + 3*10^2 = 1002000300.
In, x=1112222333,
Element at index '9':-1
and so on...
We follow zero based indexing :-)
For, x=1234.
Element at index-'0':-4,element at index -'1':3,element at index '2':-2,element at index 3:-1
How to calculate f(1)+f(2)+f(3)+....+f(n)?
I want to generate an algorithm which calculates this sum efficiently.
There is nothing to calculate.
Multiplying each position in the array od numbers will yeild thebsame number.
So all you want to do is end up with 0s on a repeated number
IE lets populate some static values in an array in psuedo code
$As[1]='0'
$As[2]='00'
$As[3]='000'
...etc
$As[18]='000000000000000000'```
these are the "results" of 10^index
Given a value n of `1234`
```1&000 + 2&00 +3 & 0 + 4```
Results in `1234`
So, if you are putting this on a chip, then probably your most efficient method is to do a bitwise XOR between each register and the next up the line as a single operation
Then you will have 0s in all the spots you care about, and just retrive the values in the registers with a 1
In code, I think it would be most efficient to do the following
```$n = arbitrary value 11223334
$x=$n*10
$zeros=($x-$n)/10```
Okay yeah we can just do bit shifting to get a value like 100200300400 etc.
To approach this problem, it could help to begin with one digit numbers and see what sum you get.
I mean like this:
Let's say, we define , then we have:
F(1)= 45 # =10*9/2 by Euler's sum formula
F(2)= F(1)*9 + F(1)*100 # F(1)*9 is the part that comes from the last digit
# because for each of the 10 possible digits in the
# first position, we have 9 digits in the last
# because both can't be equal and so one out of ten
# becomse zero. F(1)*100 comes from the leading digit
# which is multiplied by 100 (10 because we add the
# second digit and another factor of 10 because we
# get the digit ten times in that position)
If you now continue with this scheme, for k>=1 in general you get
F(k+1)= F(k)*100+10^(k-1)*45*9
The rest is probably straightforward.
Can you tell me, which Hackerrank task this is? I guess one of the Project Euler tasks right?
Wondering if it's possible to break out of a reduce operator in presto. Example use case:
I have a table where one column is an array of bigints, and I want to return all columns where the magnitude of the array is less than say 1000. So I could write
select
*
from table
where reduce(array_col, 0, (s,x) -> s + power(x,2), s -> if(s < power(1000,2), TRUE, FALSE))
but if there are a lot of rows and the arrays are big, this can take a while. I would like the operator to break and return FALSE as soon as the sum exceeds 1000. Currently I have:
select
*
from table
where reduce(array_col, 0, if(s >= power(1000,2), power(1000,2), s + power(x,2), s -> if(s < power(1000,2), TRUE, FALSE))
which at least saves some computation once the sum exceeds the target value, but still has to iterate through each array element.
There is no support for "break" from array reduction.
Note: technically, you may try to hack this by generating a failure (eg. 1/0) when you would want a break and catching it with try. I doubt it's worth it though.