I wonder if you can help me to find a solution for the following problem. Given a data frame df1 like this
d1={'L':['aaa','bbb','ccc','aaa','bbb','ddd'],
'w':[1,5,9,13,17,21],
'x':[2,6,10,14,18,22],
'y':[3,7,11,15,19,23],
'z':[4,8,12,16,20,24]}
df1=pd.DataFrame(d1)
and two dictionaries to define grouping over columns and rows
dctRowGroups={'aaa':'A','bbb':'B','ccc':'A','ddd':'B'}
dctColGroups={'w':'ALPHA','x':'BETA','y':'ALPHA','z':'BETA'}
I wanted to aggregate over columns as a first step. Applying
g2=df1.groupby(dctColGroups,axis=1)
g2.sum()
results in
but I wanted to keep the 'L' column for the next step row-wise aggregation, i.e. the result should be a dataframe df2 more like this:
What do I need to code to make this happen?
As a next step, I want to aggregate df2 over the rows using the dctRowGroups dictionary
g3=df2.groupby(dctRowGroups,axis=0)
g3.sum()
to get a final result like this:
In what way can I do all these steps in as few lines of code as possible?
Appreciate your advice on this.
Thanks a lot
Willfried.
You can do:
Firstly create df2 and insert 'L' column by using insert() method:
df2=df1.groupby(dctColGroups,axis=1).sum()
df2.insert(0,'L',df1['L']) #use this only when the order matters
#OR(use anyone of the method either insert or assign)
df2=df2.assign(L=df1['L']) #otherwise use this
Finally use assign() ,map() and groupby() method:
result=df2.assign(L=df2['L'].map(dctRowGroups)).groupby('L').sum()
Outputs:
df2:
L ALPHA BETA
0 aaa 4 6
1 bbb 12 14
2 ccc 20 22
3 aaa 28 30
4 bbb 36 38
5 ddd 44 46
result:
ALPHA BETA
L
A 52 58
B 92 98
Related
I have a very large dataframe (original_df) with columns of codes
14 15
21 22
18 16
And a second dataframe (crosswalk) which maps 'old_codes' to 'new_codes'
14 104
15 105
16 106
18 108
21 201
22 202
Of course, the resultant df (resultant_df) that I would like would have values:
104 105
201 202
108 106
I am aware of two ways to accomplish this. First, I could iterate through each code in original_df, find the code in crosswalk, then rewrite the corresponding cell in original_df with the translated code from crosswalk. The faster and more natural option would be to leftjoin() each column of original_df on 'old_codes'. Unfortunately, it seems I have to do this separately for each column, and then delete each column after its conversion column has been created -- this feels unnecessarily complicated. Is there a simpler way to convert all of original_df at once using the crosswalk?
You can do the following (I am using column numbers as you have not provided column names):
d = Dict(crosswalk[!, 1] .=> crosswalk[!, 2])
resultant_df = select(original_df, [i => ByRow(x -> d[x]) for i in 1:ncol(original_df)], renamecols=false)
I can think of 2 ways of doing this:
Apply df.query to match each row, then collect the index of each result
Set the column domain to be the index, and then reorder based on the index (but this would lose the index which I want, so may be trickier)
However I'm not sure these are good solutions (I may be missing something obvious)
Here's an example set up:
domain_vals = list("ABCDEF")
df_domain_vals = list("DECAFB")
df_num_vals = [0,5,10,15,20,25]
df = pd.DataFrame.from_dict({"domain": df_domain_vals, "num": df_num_vals})
This gives df:
domain num
0 D 0
1 E 5
2 C 10
3 A 15
4 F 20
5 B 25
1: Use df.query on each row
So I want to reorder the rows according using the values in order of domain_vals for the column domain.
A possible way to do this is to repeatedly use df.query but this seems like an un-Pythonic (un-panda-ese?) solution:
>>> pd.concat([df.query(f"domain == '{d}'") for d in domain_vals])
domain num
3 A 15
5 B 25
2 C 10
0 D 0
1 E 5
4 F 20
2: Setting the column domain as the index
reorder = df.domain.apply(lambda x: domain_vals.index(x))
df_reorder = df.set_index(reorder)
df_reorder.sort_index(inplace=True)
df_reorder.index.name = None
Again this gives
>>> df_reorder
domain num
0 A 15
1 B 25
2 C 10
3 D 0
4 E 5
5 F 20
Can anyone suggest something better (in the sense of "less of a hack"). I understand that my solution works, I just don't think that calling pandas.concat along with a list comprehension is the right approach here.
Having said that, it's shorter than the 2nd option, so I presume there must be some equally simple way I can do this with pandas methods I've overlooked?
Another way is merge:
(pd.DataFrame({'domain':df_domain_vals})
.merge(df, on='domain', how='left')
)
I am relatively new to this field and am working with a data set to find meaningful insights into customer behavior. My dataset looks like:
customerId week first_trip_week rides
0 156 44 36 2
1 164 44 38 6
2 224 42 36 5
3 224 43 36 4
4 224 44 36 5
What I want to do is create new columns week 44,week 43, week 42 and get the values in the "ride" column to be filled into the rows for the respective customer id. This is in the hope that I can eventually also make the customerId my index and can get denominations for different weeks. Help would be greatly appreciated!
Thank you!!
If I'm understanding you correctly, you want to create new columns in the same dataframe for weeks 44, 43, and 42 with the correct values for each customerId and NaN for those that don't have it. If your original dataframe has all the user data, I would first filter for dataframes that have the correct week number
week42DF = dataset.loc[dataset['week']==42,['customerId','rides']].rename(columns={'rides':'week42Rides'})
getting only the rides and customerId and renaming the former here to make things a little easier for us. Then left join the old dataframe and the new one on customerId
dataset = pd.merge(dataset,week42DF,how='left',on='customerId')
The users that are missing from week42DF will have NaN in the week42rides column in the merged dataset which you can then use the .fillna(0) method to replace with zeros. Do this for each week you require.
See Pandas' documentation on merge and the more general concatenate for more info.
I am facing an issue with transforming my data using Pandas' groupby. I have a table (several million rows and 3 variables) that I am trying to group by "Date" variable.
Snippet from a raw table:
Date V1 V2
07_19_2017_17_00_06 10 5
07_19_2017_17_00_06 20 6
07_19_2017_17_00_08 15 3
...
01_07_2019_14_06_59 30 1
01_07_2019_14_06_59 40 2
The goal is to group rows with the same value of "Date" by applying a mean function over V1 and sum function over V2. So that the expected result resembles:
Date V1 V2
07_19_2017_17_00_06 15 11 # This row has changed
07_19_2017_17_00_08 15 3
...
01_07_2019_14_06_59 35 3 # and this one too!
My code:
df = df.groupby(['Date'], as_index=False).agg({'V1': 'mean', 'V2': 'sum'})
The output I am getting, however, is totally unexpected and I am can't find a reasonable explanation of why it happens. It seems like Pandas is only processing data from 01_01_2018_00_00_01 to 12_31_2018_23_58_40, instead of 07_19_2017_17_00_06 to 01_07_2019_14_06_59.
Date V1 V2
01_01_2018_00_00_01 30 3
01_01_2018_00_00_02 20 4
...
12_31_2018_23_58_35 15 3
12_31_2018_23_58_40 16 11
If you have any clue, I would really appreciate your input. Thank you!
I suspect that the issue is based around Pandas not recognizing the date format that I've used. A solution turned out to be quite simple: convert all of the dates into UNIX time format, divide by 60 and then, repeat the groupby procedure.
I wasnt able to find anything like this yet... but here is what i need to do:
I have a query result like this:
ID Data1 Data2 Data3 Data4 ... Data7
1 12 13 15 1 ... 12
2 12 13 15 1 ... 12
3 12 13 15 1 ... 12
4 12 13 15 1 ... 12
I need to make a BarChart With 2 Values, 1 is the first row (ID=1) one is the last row (ID=4). The column headers DataX is what i need the series to be paired by.
Example:
ID Insured Uninsured Rejected
1 12 3 0
4 16 9 2
In the BarChart i need to see the number of insured or ID=1 and ID=2 next to each other, the number of Uninsured and rejected the same.
I feel like i have tried all ways possible but was not able to get anything besides a BarChart where all values of ID=1 where displayed and then all values for ID=2 where displayed next to each other.
Im sure this was a very confusing way to describe it, but i hope someone can understand what i am looking for.
NOTE: I tried to do this in Excel, and it worked within 2 minutes. I set the filter: Series on the 2 rows that i wanted, and set the Categories to the dataX Columns as described, and everything looked great. When i tried to translate this into SSRS i was able to do all the same things in the Series and Categories, but then i had to put in values and that screwed everything up.
PLEASE HELP!
I bet you need to add a grouping to your values by a spanning factor.