Name stacked bars after legend entry on Pandas/Matplotlib - pandas

I have a stacked bar chart that works really well for what I'm looking for. My problem is handling the labels.
I can label every single stacked bar after its value (number), but I'm looking to label it after its name (on the legend).
Does anyone have an idea on how to solve this?
ps.: Unfortunately I can't post images yet.
I have something like this:
####
#15#
####
oooo ####
oooo #35#
o55o ####
oooo ####
oooo o12o
And need like this:
####
#### A
####
oooo ####
oooo B #### A
oooo ####
oooo oooo B

I've written a short example, see the code below:
import numpy as np
import matplotlib.pyplot as plt
# Some data
x = np.array([0, 1, 2])
y1 = np.array([3, 4, 1])
y2 = np.array([2, 2, 4])
# label text
label_y1 = 'y1'
label_y2 = 'y2'
# Create the base plot
fig, ax = plt.subplots()
bars_y1 = ax.bar(x, y1, width=0.5, label=label_y1)
bars_y2 = ax.bar(x, y2, width=0.5, label=label_y2, bottom=y1)
# Function to add labels to the plot
def add_labels(ax, bars, label):
for bar in bars:
# Get the desired x and y locations
xloc = bar.get_x() + 1.05 * bar.get_width()
yloc = bar.get_y() + bar.get_height() / 2
ax.annotate(label, xy=(xloc, yloc), va='center', ha='left', color=bar.get_facecolor())
# Add the labels in the plot
add_labels(ax, bars_y1, label_y1)
add_labels(ax, bars_y2, label_y2)
plt.show()
First of all, I generate some dummy data (x, y1 and y2). Then, I define the desired label text (label_y1 and label_y2) and lastly I make the base bar graph using Axes.bar. Note that I store the return value from the Axes.bar calls, which is a container containing all the bars!
Now, we get to the interesting part. I define a function called add_labels. As an input, it takes the Axes of interest, a container with all the bars and the desired label text. In the function body, I loop over all the bars and determine the desired x and y location for the label text. Using these values, I place label text at those coordinates using the Axes.annotate method. At the end of the script, I simply call the add_labels function with the desired arguments to get the following output:
Is this what you are looking for?

Based on Dex answer I came up with a solution.
Using patches, it will get every single bar from the chart. The bars are ordenated by rows. So if you have a 4x3 dataframe:
zero um dois
0 a b c
1 d e f
2 g h i
3 j k l
bars.patches will have each column after the other: [a,d,g,j,b,e,h,k,c,f,i,l]
So, every 4 items (rows), it restarts. To do that, we can use the the mod function (%) based on the number of rows on the df:
i % len(df.index) == 0 #moves position counter to the next column name
The code ended up like this:
import pandas as pd
import numpy as np
# Some data
x = np.array(['zero', 'um', 'dois'])
y = np.array([[3, 4, 8],[2, 2, 4],[6, 7, 8]])
df = pd.DataFrame(y, columns = x)
print(df)
zero um dois
0 3 4 8
1 2 2 4
2 6 7 8
title = 'Chart Title'
bars = df.plot.bar(ax = ax, stacked = True, title = title, legend = False)
plt.xlabel('x axis label')
pos = -1
for i, bar in enumerate(bars.patches): #runs through every single bar on the chart
if i % len(df.index) == 0: #based on lenght of the index, gets which label
pos += 1 #to use from the columns. Returning to the
#first after completing a row
xloc = bar.get_x()
yloc = bar.get_y() + bar.get_height() / 2
if bar.get_height() > 30:
ax.annotate(str(df.columns[pos]), xy = (xloc, yloc), va='center', ha='left')
#df.columns[pos] will get the correct column name
So, no matter the size of the dataframe, it will plot the column names next to the bars
chart example:
https://i.stack.imgur.com/2iHau.png

Related

How to manually create a label in Matplotlib.pyplot

I am trying to compare 2 figures as follows:
I using the function subplot() under the library Matplotlib.pylot to plot these 2 images, and the following are my codes:
def Plot_Labels(data,data_check):
data = np.reshape(data,(414,507))
#data = np.reshape(data,(414,507))
shape = data.shape
nan_mask = np.isnan(data_check)
data_mask = data[~nan_mask]
valid_data = np.empty(shape)
valid_data[~nan_mask] = data_mask
valid_data[nan_mask] = np.nan
fig, axes = plt.subplots()
im = axes.imshow(valid_data)
bar = plt.colorbar(im)
bar.set_label('Flood Hazard')
plt.show()
However, the labels in these 2 figures are different. For example, both 4 and 5 gives the same yellow color in the 2 figures respectively. Therefore, is there any method to manually create label 5 in the second figure, so that the 2 figures become comparable?

Display the value of the bar on each bar, wrong place

I have a DF like that:
Day Destiny Flight Year
0 10 AJU 1504 2019
1 10 AJU 1502 2020
2 10 FOR 1524 2019
3 10 FOR 1522 2020
4 10 FOR 1528 2019
I am using this code to plot the chart to compare the year side by side for each destination.It's working well.
df.groupby(["Destiny","Year"])["Flight"].count().unstack().plot.bar(figsize=(12, 3))
I have this other one to plot values on top of the bars. But it is plotting in the wrong place.
a = df.groupby(["Destiny","Year"])["Flight"].count().unstack().plot.bar(figsize=(12, 3))
for i, v in enumerate(df.groupby(["Destiny","Year"])["Flight"].count()):
a.text(v, i, str(v))
How to display the value of the bar on each bar correctly?
I've been looking for something like that, but I haven't found it.
Update:
Version 3.4 of matplotlib added function bar_label, which could be incorporated as follows in the code below:
for bar_group in ax.containers:
ax.bar_label(bar_group, fmt='%.0f', size=18)
Old answer:
You can loop through the generated bars, and use their x, height and width to position the text. Adding an empty line into the string helps position the text independent of the scale. ax.margins() can add some space above the bars to make the text fit.
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame({'Destiny': ['AJU','AJU','FOR','FOR','FOR' ],
'Flight':range(1501,1506),
'Year':[2019,2020,2019,2020,2019]})
ax = df.groupby(["Destiny","Year"])["Flight"].count().unstack().plot.bar(figsize=(12, 3))
for p in ax.patches:
x = p.get_x()
h = p.get_height()
w = p.get_width()
ax.annotate(f'{h:.0f}\n', (x + w/2, h), ha='center', va='center', size=18)
plt.margins(y=0.2)
plt.tight_layout()
plt.show()
The below add_value_labels function is from justfortherec, it's very easy to use, just pass matplotlib.axes.Axes object to it:
import pandas as pd
import matplotlib.pyplot as plt
def add_value_labels(ax, spacing=5):
"""Add labels to the end of each bar in a bar chart.
Arguments:
ax (matplotlib.axes.Axes): The matplotlib object containing the axes
of the plot to annotate.
spacing (int): The distance between the labels and the bars.
"""
# For each bar: Place a label
for rect in ax.patches:
# Get X and Y placement of label from rect.
y_value = rect.get_height()
x_value = rect.get_x() + rect.get_width() / 2
# Number of points between bar and label. Change to your liking.
space = spacing
# Vertical alignment for positive values
va = 'bottom'
# If value of bar is negative: Place label below bar
if y_value < 0:
# Invert space to place label below
space *= -1
# Vertically align label at top
va = 'top'
# Use Y value as label and format number with one decimal place
label = "{:.1f}".format(y_value)
# Create annotation
ax.annotate(
label, # Use `label` as label
(x_value, y_value), # Place label at end of the bar
xytext=(0, space), # Vertically shift label by `space`
textcoords="offset points", # Interpret `xytext` as offset in points
ha='center', # Horizontally center label
va=va) # Vertically align label differently for
# positive and negative values.
df = pd.read_csv("1.csv")
ax = df.groupby(["Destiny","Year"])["Flight"].count().unstack().plot.bar(figsize=(12, 3))
# Call the function above. All the magic happens there.
add_value_labels(ax)
plt.show()
I think we can adapt this answer referenced by #JohanC to fit your problem.
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
from decimal import Decimal
df = pd.DataFrame({'Day':[10]*5, 'Destiny':['AJU']*2+['FOR']*3, 'Flight':[1504,1502,1524,1522,1528],'Year':[2019,2020,2019,2020,2019]})
df.groupby(["Destiny","Year"])["Flight"].count().unstack().plot.bar(figsize=(12, 3))
a = df.groupby(["Destiny","Year"])["Flight"].count().unstack().plot.bar(figsize=(12, 3))
for p in a.patches:
a.annotate('{}'.format(Decimal(str(p.get_height()))), (p.get_x(), p.get_height()))
plt.show()

Scatterplot with marginal KDE plots and multiple categories in Matplotlib

I'd like a function in Matplotlib similar to the Matlab 'scatterhist' function which takes continuous values for 'x' and 'y' axes, plus a categorical variable as input; and produces a scatter plot with marginal KDE plots and two or more categorical variables in different colours as output:
I've found examples of scatter plots with marginal histograms in Matplotlib, marginal histograms in Seaborn jointplot, overlapping histograms in Matplotlib and marginal KDE plots in Matplotib ; but I haven't found any examples which combine scatter plots with marginal KDE plots and are colour coded to indicate different categories.
If possible, I'd like a solution which uses 'vanilla' Matplotlib without Seaborn, as this will avoid dependencies and allow complete control and customisation of the plot appearance using standard Matplotlib commands.
I was going to try to write something based on the above examples; but before doing so wanted to check whether a similar function was already available, and if not then would be grateful for any guidance on the best approach to use.
#ImportanceOfBeingEarnest: Many thanks for your help.
Here's my first attempt at a solution.
It's a bit hacky but achieves my objectives, and is fully customisable using standard matplotlib commands. I'm posting the code here with annotations in case anyone else wishes to use it or develop it further. If there are any improvements or neater ways of writing the code I'm always keen to learn and would be grateful for guidance.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy import stats
label = ['Setosa','Versicolor','Virginica'] # List of labels for categories
cl = ['b','r','y'] # List of colours for categories
categories = len(label)
sample_size = 20 # Number of samples in each category
# Create numpy arrays for dummy x and y data:
x = np.zeros(shape=(categories, sample_size))
y = np.zeros(shape=(categories, sample_size))
# Generate random data for each categorical variable:
for n in range (0, categories):
x[n,:] = np.array(np.random.randn(sample_size)) + 4 + n
y[n,:] = np.array(np.random.randn(sample_size)) + 6 - n
# Set up 4 subplots as axis objects using GridSpec:
gs = gridspec.GridSpec(2, 2, width_ratios=[1,3], height_ratios=[3,1])
# Add space between scatter plot and KDE plots to accommodate axis labels:
gs.update(hspace=0.3, wspace=0.3)
# Set background canvas colour to White instead of grey default
fig = plt.figure()
fig.patch.set_facecolor('white')
ax = plt.subplot(gs[0,1]) # Instantiate scatter plot area and axis range
ax.set_xlim(x.min(), x.max())
ax.set_ylim(y.min(), y.max())
ax.set_xlabel('x')
ax.set_ylabel('y')
axl = plt.subplot(gs[0,0], sharey=ax) # Instantiate left KDE plot area
axl.get_xaxis().set_visible(False) # Hide tick marks and spines
axl.get_yaxis().set_visible(False)
axl.spines["right"].set_visible(False)
axl.spines["top"].set_visible(False)
axl.spines["bottom"].set_visible(False)
axb = plt.subplot(gs[1,1], sharex=ax) # Instantiate bottom KDE plot area
axb.get_xaxis().set_visible(False) # Hide tick marks and spines
axb.get_yaxis().set_visible(False)
axb.spines["right"].set_visible(False)
axb.spines["top"].set_visible(False)
axb.spines["left"].set_visible(False)
axc = plt.subplot(gs[1,0]) # Instantiate legend plot area
axc.axis('off') # Hide tick marks and spines
# Plot data for each categorical variable as scatter and marginal KDE plots:
for n in range (0, categories):
ax.scatter(x[n],y[n], color='none', label=label[n], s=100, edgecolor= cl[n])
kde = stats.gaussian_kde(x[n,:])
xx = np.linspace(x.min(), x.max(), 1000)
axb.plot(xx, kde(xx), color=cl[n])
kde = stats.gaussian_kde(y[n,:])
yy = np.linspace(y.min(), y.max(), 1000)
axl.plot(kde(yy), yy, color=cl[n])
# Copy legend object from scatter plot to lower left subplot and display:
# NB 'scatterpoints = 1' customises legend box to show only 1 handle (icon) per label
handles, labels = ax.get_legend_handles_labels()
axc.legend(handles, labels, scatterpoints = 1, loc = 'center', fontsize = 12)
plt.show()`
`
Version 2, using Pandas to import 'real' data from a csv file, with a different number of entries in each category. (csv file format: row 0 = headers; col 0 = x values, col 1 = y values, col 2 = category labels). Scatterplot axis and legend labels are generated from column headers.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from scipy import stats
import pandas as pd
"""
Create scatter plot with marginal KDE plots
from csv file with 3 cols of data
formatted as following example (first row of
data are headers):
'x_label', 'y_label', 'category_label'
4,5,'virginica'
3,6,'sentosa'
4,6, 'virginica' etc...
"""
df = pd.read_csv('iris_2.csv') # enter filename for csv file to be imported (within current working directory)
cl = ['b','r','y', 'g', 'm', 'k'] # Custom list of colours for each categories - increase as needed...
headers = list(df.columns) # Extract list of column headers
# Find min and max values for all x (= col [0]) and y (= col [1]) in dataframe:
xmin, xmax = df.min(axis=0)[0], df.max(axis=0)[0]
ymin, ymax = df.min(axis=0)[1], df.max(axis=0)[1]
# Create a list of all unique categories which occur in the right hand column (ie index '2'):
category_list = df.ix[:,2].unique()
# Set up 4 subplots and aspect ratios as axis objects using GridSpec:
gs = gridspec.GridSpec(2, 2, width_ratios=[1,3], height_ratios=[3,1])
# Add space between scatter plot and KDE plots to accommodate axis labels:
gs.update(hspace=0.3, wspace=0.3)
fig = plt.figure() # Set background canvas colour to White instead of grey default
fig.patch.set_facecolor('white')
ax = plt.subplot(gs[0,1]) # Instantiate scatter plot area and axis range
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_xlabel(headers[0], fontsize = 14)
ax.set_ylabel(headers[1], fontsize = 14)
ax.yaxis.labelpad = 10 # adjust space between x and y axes and their labels if needed
axl = plt.subplot(gs[0,0], sharey=ax) # Instantiate left KDE plot area
axl.get_xaxis().set_visible(False) # Hide tick marks and spines
axl.get_yaxis().set_visible(False)
axl.spines["right"].set_visible(False)
axl.spines["top"].set_visible(False)
axl.spines["bottom"].set_visible(False)
axb = plt.subplot(gs[1,1], sharex=ax) # Instantiate bottom KDE plot area
axb.get_xaxis().set_visible(False) # Hide tick marks and spines
axb.get_yaxis().set_visible(False)
axb.spines["right"].set_visible(False)
axb.spines["top"].set_visible(False)
axb.spines["left"].set_visible(False)
axc = plt.subplot(gs[1,0]) # Instantiate legend plot area
axc.axis('off') # Hide tick marks and spines
# For each category in the list...
for n in range(0, len(category_list)):
# Create a sub-table containing only entries matching current category:
st = df.loc[df[headers[2]] == category_list[n]]
# Select first two columns of sub-table as x and y values to be plotted:
x = st[headers[0]]
y = st[headers[1]]
# Plot data for each categorical variable as scatter and marginal KDE plots:
ax.scatter(x,y, color='none', s=100, edgecolor= cl[n], label = category_list[n])
kde = stats.gaussian_kde(x)
xx = np.linspace(xmin, xmax, 1000)
axb.plot(xx, kde(xx), color=cl[n])
kde = stats.gaussian_kde(y)
yy = np.linspace(ymin, ymax, 1000)
axl.plot(kde(yy), yy, color=cl[n])
# Copy legend object from scatter plot to lower left subplot and display:
# NB 'scatterpoints = 1' customises legend box to show only 1 handle (icon) per label
handles, labels = ax.get_legend_handles_labels()
axc.legend(handles, labels, title = headers[2], scatterpoints = 1, loc = 'center', fontsize = 12)
plt.show()

Matplotlib: different scale on negative side of the axis

Background
I am trying to show three variables on a single plot. I have connected the three points using lines of different colours based on some other variables. This is shown here
Problem
What I want to do is to have a different scale on the negative x-axis. This would help me in providing positive x_ticks, different axis label and also clear and uncluttered representation of the lines on left side of the image
Question
How to have a different positive x-axis starting from 0 towards negative direction?
Have xticks based on data plotted in that direction
Have a separate xlabel for this new axis
Additional information
I have checked other questions regarding inclusion of multiple axes e.g. this and this. However, these questions did not serve the purpose.
Code Used
font_size = 20
plt.rcParams.update({'font.size': font_size})
fig = plt.figure()
ax = fig.add_subplot(111)
#read my_data from file or create it
for case in my_data:
#Iterating over my_data
if condition1 == True:
local_linestyle = '-'
local_color = 'r'
local_line_alpha = 0.6
elif condition2 == 1:
local_linestyle = '-'
local_color = 'b'
local_line_alpha = 0.6
else:
local_linestyle = '--'
local_color = 'g'
local_line_alpha = 0.6
datapoint = [case[0], case[1], case[2]]
plt.plot(datapoint[0], 0, color=local_color)
plt.plot(-datapoint[2], 0, color=local_color)
plt.plot(0, datapoint[1], color=local_color)
plt.plot([datapoint[0], 0], [0, datapoint[1]], linestyle=local_linestyle, color=local_color)
plt.plot([-datapoint[2], 0], [0, datapoint[1]], linestyle=local_linestyle, color=local_color)
plt.show()
exit()
You can define a custom scale, where values below zero are scaled differently than those above zero.
import numpy as np
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
from matplotlib.ticker import FuncFormatter
class AsymScale(mscale.ScaleBase):
name = 'asym'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.a = kwargs.get("a", 1)
def get_transform(self):
return self.AsymTrans(self.a)
def set_default_locators_and_formatters(self, axis):
# possibly, set a different locator and formatter here.
fmt = lambda x,pos: "{}".format(np.abs(x))
axis.set_major_formatter(FuncFormatter(fmt))
class AsymTrans(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, a):
mtransforms.Transform.__init__(self)
self.a = a
def transform_non_affine(self, x):
return (x >= 0)*x + (x < 0)*x*self.a
def inverted(self):
return AsymScale.InvertedAsymTrans(self.a)
class InvertedAsymTrans(AsymTrans):
def transform_non_affine(self, x):
return (x >= 0)*x + (x < 0)*x/self.a
def inverted(self):
return AsymScale.AsymTrans(self.a)
Using this you would provide a scale parameter a that scales the negative part of the axes.
# Now that the Scale class has been defined, it must be registered so
# that ``matplotlib`` can find it.
mscale.register_scale(AsymScale)
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot([-2, 0, 5], [0,1,0])
ax.set_xscale("asym", a=2)
ax.annotate("negative axis", xy=(.25,0), xytext=(0,-30),
xycoords = "axes fraction", textcoords="offset points", ha="center")
ax.annotate("positive axis", xy=(.75,0), xytext=(0,-30),
xycoords = "axes fraction", textcoords="offset points", ha="center")
plt.show()
The question is not very clear about what xticks and labels are desired, so I left that out for now.
Here's how to get what you want. This solution uses two twined axes object to get different scaling to the left and right of the origin, and then hides all the evidence:
import matplotlib.pyplot as plt
import matplotlib as mpl
from numbers import Number
tickkwargs = {m+k:False for k in ('bottom','top','left','right') for m in ('','label')}
p = np.zeros((10, 3, 2))
p[:,0,0] -= np.arange(10)*.1 + .5
p[:,1,1] += np.repeat(np.arange(5), 2)*.1 + .3
p[:,2,0] += np.arange(10)*.5 + 2
fig = plt.figure(figsize=(8,6))
host = fig.add_subplot(111)
par = host.twiny()
host.set_xlim(-6, 6)
par.set_xlim(-1, 1)
for ps in p:
# mask the points with negative x values
ppos = ps[ps[:,0] >= 0].T
host.plot(*ppos)
# mask the points with positive x values
pneg = ps[ps[:,0] <= 0].T
par.plot(*pneg)
# hide all possible ticks/notation text that could be set by the second x axis
par.tick_params(axis="both", **tickkwargs)
par.xaxis.get_offset_text().set_visible(False)
# fix the x tick labels so they're all positive
host.set_xticklabels(np.abs(host.get_xticks()))
fig.show()
Output:
Here's what the set of points p I used in the code above look like when plotted normally:
fig = plt.figure(figsize=(8,6))
ax = fig.gca()
for ps in p:
ax.plot(*ps.T)
fig.show()
Output:
The method of deriving a class of mscale.ScaleBase as shown in other answers may be too complicated for your purpose.
You can pass two scale transform functions to set_xscale or set_yscale, something like the following.
def get_scale(a=1): # a is the scale of your negative axis
def forward(x):
x = (x >= 0) * x + (x < 0) * x * a
return x
def inverse(x):
x = (x >= 0) * x + (x < 0) * x / a
return x
return forward, inverse
fig, ax = plt.subplots()
forward, inverse = get_scale(a=3)
ax.set_xscale('function', functions=(forward, inverse)) # this is for setting x axis
# do plotting
More examples can be found in this doc.

Creating a stacked and grouped bar chart in pandas [duplicate]

So here is how my data set looks like :
In [1]: df1=pd.DataFrame(np.random.rand(4,2),index=["A","B","C","D"],columns=["I","J"])
In [2]: df2=pd.DataFrame(np.random.rand(4,2),index=["A","B","C","D"],columns=["I","J"])
In [3]: df1
Out[3]:
I J
A 0.675616 0.177597
B 0.675693 0.598682
C 0.631376 0.598966
D 0.229858 0.378817
In [4]: df2
Out[4]:
I J
A 0.939620 0.984616
B 0.314818 0.456252
C 0.630907 0.656341
D 0.020994 0.538303
I want to have stacked bar plot for each dataframe but since they have same index, I'd like to have 2 stacked bars per index.
I've tried to plot both on the same axes :
In [5]: ax = df1.plot(kind="bar", stacked=True)
In [5]: ax2 = df2.plot(kind="bar", stacked=True, ax = ax)
But it overlaps.
Then I tried to concat the two dataset first :
pd.concat(dict(df1 = df1, df2 = df2),axis = 1).plot(kind="bar", stacked=True)
but here everything is stacked
My best try is :
pd.concat(dict(df1 = df1, df2 = df2),axis = 0).plot(kind="bar", stacked=True)
Which gives :
This is basically what I want, except that I want the bar ordered as
(df1,A) (df2,A) (df1,B) (df2,B) etc...
I guess there is a trick but I can't found it !
After #bgschiller's answer I got this :
Which is almost what I want. I would like the bar to be clustered by index, in order to have something visually clear.
Bonus : Having the x-label not redundant, something like :
df1 df2 df1 df2
_______ _______ ...
A B
I eventually found a trick (edit: see below for using seaborn and longform dataframe):
Solution with pandas and matplotlib
Here it is with a more complete example :
import pandas as pd
import matplotlib.cm as cm
import numpy as np
import matplotlib.pyplot as plt
def plot_clustered_stacked(dfall, labels=None, title="multiple stacked bar plot", H="/", **kwargs):
"""Given a list of dataframes, with identical columns and index, create a clustered stacked bar plot.
labels is a list of the names of the dataframe, used for the legend
title is a string for the title of the plot
H is the hatch used for identification of the different dataframe"""
n_df = len(dfall)
n_col = len(dfall[0].columns)
n_ind = len(dfall[0].index)
axe = plt.subplot(111)
for df in dfall : # for each data frame
axe = df.plot(kind="bar",
linewidth=0,
stacked=True,
ax=axe,
legend=False,
grid=False,
**kwargs) # make bar plots
h,l = axe.get_legend_handles_labels() # get the handles we want to modify
for i in range(0, n_df * n_col, n_col): # len(h) = n_col * n_df
for j, pa in enumerate(h[i:i+n_col]):
for rect in pa.patches: # for each index
rect.set_x(rect.get_x() + 1 / float(n_df + 1) * i / float(n_col))
rect.set_hatch(H * int(i / n_col)) #edited part
rect.set_width(1 / float(n_df + 1))
axe.set_xticks((np.arange(0, 2 * n_ind, 2) + 1 / float(n_df + 1)) / 2.)
axe.set_xticklabels(df.index, rotation = 0)
axe.set_title(title)
# Add invisible data to add another legend
n=[]
for i in range(n_df):
n.append(axe.bar(0, 0, color="gray", hatch=H * i))
l1 = axe.legend(h[:n_col], l[:n_col], loc=[1.01, 0.5])
if labels is not None:
l2 = plt.legend(n, labels, loc=[1.01, 0.1])
axe.add_artist(l1)
return axe
# create fake dataframes
df1 = pd.DataFrame(np.random.rand(4, 5),
index=["A", "B", "C", "D"],
columns=["I", "J", "K", "L", "M"])
df2 = pd.DataFrame(np.random.rand(4, 5),
index=["A", "B", "C", "D"],
columns=["I", "J", "K", "L", "M"])
df3 = pd.DataFrame(np.random.rand(4, 5),
index=["A", "B", "C", "D"],
columns=["I", "J", "K", "L", "M"])
# Then, just call :
plot_clustered_stacked([df1, df2, df3],["df1", "df2", "df3"])
And it gives that :
You can change the colors of the bar by passing a cmap argument:
plot_clustered_stacked([df1, df2, df3],
["df1", "df2", "df3"],
cmap=plt.cm.viridis)
Solution with seaborn:
Given the same df1, df2, df3, below, I convert them in a long form:
df1["Name"] = "df1"
df2["Name"] = "df2"
df3["Name"] = "df3"
dfall = pd.concat([pd.melt(i.reset_index(),
id_vars=["Name", "index"]) # transform in tidy format each df
for i in [df1, df2, df3]],
ignore_index=True)
The problem with seaborn is that it doesn't stack bars natively, so the trick is to plot the cumulative sum of each bar on top of each other:
dfall.set_index(["Name", "index", "variable"], inplace=1)
dfall["vcs"] = dfall.groupby(level=["Name", "index"]).cumsum()
dfall.reset_index(inplace=True)
>>> dfall.head(6)
Name index variable value vcs
0 df1 A I 0.717286 0.717286
1 df1 B I 0.236867 0.236867
2 df1 C I 0.952557 0.952557
3 df1 D I 0.487995 0.487995
4 df1 A J 0.174489 0.891775
5 df1 B J 0.332001 0.568868
Then loop over each group of variable and plot the cumulative sum:
c = ["blue", "purple", "red", "green", "pink"]
for i, g in enumerate(dfall.groupby("variable")):
ax = sns.barplot(data=g[1],
x="index",
y="vcs",
hue="Name",
color=c[i],
zorder=-i, # so first bars stay on top
edgecolor="k")
ax.legend_.remove() # remove the redundant legends
It lacks the legend that can be added easily I think. The problem is that instead of hatches (which can be added easily) to differentiate the dataframes we have a gradient of lightness, and it's a bit too light for the first one, and I don't really know how to change that without changing each rectangle one by one (as in the first solution).
Tell me if you don't understand something in the code.
Feel free to re-use this code which is under CC0.
This is a great start but I think the colors could be modified a bit for clarity. Also be careful about importing every argument in Altair as this may cause collisions with existing objects in your namespace. Here is some reconfigured code to display the correct color display when stacking the values:
Import packages
import pandas as pd
import numpy as np
import altair as alt
Generate some random data
df1=pd.DataFrame(10*np.random.rand(4,3),index=["A","B","C","D"],columns=["I","J","K"])
df2=pd.DataFrame(10*np.random.rand(4,3),index=["A","B","C","D"],columns=["I","J","K"])
df3=pd.DataFrame(10*np.random.rand(4,3),index=["A","B","C","D"],columns=["I","J","K"])
def prep_df(df, name):
df = df.stack().reset_index()
df.columns = ['c1', 'c2', 'values']
df['DF'] = name
return df
df1 = prep_df(df1, 'DF1')
df2 = prep_df(df2, 'DF2')
df3 = prep_df(df3, 'DF3')
df = pd.concat([df1, df2, df3])
Plot data with Altair
alt.Chart(df).mark_bar().encode(
# tell Altair which field to group columns on
x=alt.X('c2:N', title=None),
# tell Altair which field to use as Y values and how to calculate
y=alt.Y('sum(values):Q',
axis=alt.Axis(
grid=False,
title=None)),
# tell Altair which field to use to use as the set of columns to be represented in each group
column=alt.Column('c1:N', title=None),
# tell Altair which field to use for color segmentation
color=alt.Color('DF:N',
scale=alt.Scale(
# make it look pretty with an enjoyable color pallet
range=['#96ceb4', '#ffcc5c','#ff6f69'],
),
))\
.configure_view(
# remove grid lines around column clusters
strokeOpacity=0
)
I have managed to do the same using pandas and matplotlib subplots with basic commands.
Here's an example:
fig, axes = plt.subplots(nrows=1, ncols=3)
ax_position = 0
for concept in df.index.get_level_values('concept').unique():
idx = pd.IndexSlice
subset = df.loc[idx[[concept], :],
['cmp_tr_neg_p_wrk', 'exp_tr_pos_p_wrk',
'cmp_p_spot', 'exp_p_spot']]
print(subset.info())
subset = subset.groupby(
subset.index.get_level_values('datetime').year).sum()
subset = subset / 4 # quarter hours
subset = subset / 100 # installed capacity
ax = subset.plot(kind="bar", stacked=True, colormap="Blues",
ax=axes[ax_position])
ax.set_title("Concept \"" + concept + "\"", fontsize=30, alpha=1.0)
ax.set_ylabel("Hours", fontsize=30),
ax.set_xlabel("Concept \"" + concept + "\"", fontsize=30, alpha=0.0),
ax.set_ylim(0, 9000)
ax.set_yticks(range(0, 9000, 1000))
ax.set_yticklabels(labels=range(0, 9000, 1000), rotation=0,
minor=False, fontsize=28)
ax.set_xticklabels(labels=['2012', '2013', '2014'], rotation=0,
minor=False, fontsize=28)
handles, labels = ax.get_legend_handles_labels()
ax.legend(['Market A', 'Market B',
'Market C', 'Market D'],
loc='upper right', fontsize=28)
ax_position += 1
# look "three subplots"
#plt.tight_layout(pad=0.0, w_pad=-8.0, h_pad=0.0)
# look "one plot"
plt.tight_layout(pad=0., w_pad=-16.5, h_pad=0.0)
axes[1].set_ylabel("")
axes[2].set_ylabel("")
axes[1].set_yticklabels("")
axes[2].set_yticklabels("")
axes[0].legend().set_visible(False)
axes[1].legend().set_visible(False)
axes[2].legend(['Market A', 'Market B',
'Market C', 'Market D'],
loc='upper right', fontsize=28)
The dataframe structure of "subset" before grouping looks like this:
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 105216 entries, (D_REC, 2012-01-01 00:00:00) to (D_REC, 2014-12-31 23:45:00)
Data columns (total 4 columns):
cmp_tr_neg_p_wrk 105216 non-null float64
exp_tr_pos_p_wrk 105216 non-null float64
cmp_p_spot 105216 non-null float64
exp_p_spot 105216 non-null float64
dtypes: float64(4)
memory usage: 4.0+ MB
and the plot like this:
It is formatted in the "ggplot" style with the following header:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
The answer by #jrjc for use of seaborn is very clever, but it has a few problems, as noted by the author:
The "light" shading is too pale when only two or three categories are needed. It makes colour series (pale blue, blue, dark blue, etc.) difficult to distinguish.
The legend is not produced to distinguish the meaning of the shadings ("pale" means what?)
More importantly, however, I found out that, because of the groupbystatement in the code:
This solution works only if the columns are ordered alphabetically. If I rename columns ["I", "J", "K", "L", "M"] by something anti-alphabetical (["zI", "yJ", "xK", "wL", "vM"]), I get this graph instead:
I strove to resolve these problems with the plot_grouped_stackedbars() function in this open-source python module.
It keeps the shading within reasonable range
It auto-generates a legend that explains the shading
It does not rely on groupby
It also allows for
various normalization options (see below normalization to 100% of maximum value)
the addition of error bars
See full demo here. I hope this proves useful and can answer the original question.
Here is a more succinct implementation of the answer from Cord Kaldemeyer. The idea is to reserve as much width as necessary for the plots. Then each cluster gets a subplot of the required length.
# Data and imports
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MaxNLocator
import matplotlib.gridspec as gridspec
import matplotlib
matplotlib.style.use('ggplot')
np.random.seed(0)
df = pd.DataFrame(np.asarray(1+5*np.random.random((10,4)), dtype=int),columns=["Cluster", "Bar", "Bar_part", "Count"])
df = df.groupby(["Cluster", "Bar", "Bar_part"])["Count"].sum().unstack(fill_value=0)
display(df)
# plotting
clusters = df.index.levels[0]
inter_graph = 0
maxi = np.max(np.sum(df, axis=1))
total_width = len(df)+inter_graph*(len(clusters)-1)
fig = plt.figure(figsize=(total_width,10))
gridspec.GridSpec(1, total_width)
axes=[]
ax_position = 0
for cluster in clusters:
subset = df.loc[cluster]
ax = subset.plot(kind="bar", stacked=True, width=0.8, ax=plt.subplot2grid((1,total_width), (0,ax_position), colspan=len(subset.index)))
axes.append(ax)
ax.set_title(cluster)
ax.set_xlabel("")
ax.set_ylim(0,maxi+1)
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax_position += len(subset.index)+inter_graph
for i in range(1,len(clusters)):
axes[i].set_yticklabels("")
axes[i-1].legend().set_visible(False)
axes[0].set_ylabel("y_label")
fig.suptitle('Big Title', fontsize="x-large")
legend = axes[-1].legend(loc='upper right', fontsize=16, framealpha=1).get_frame()
legend.set_linewidth(3)
legend.set_edgecolor("black")
plt.show()
The result is the following:
We tried to do this just using matplotlib. We converted the values to cumulative values as shown below:
# get cumulative values
cum_val = [a[0]]
for j in range(1,len(a)):
cum_val.append( cum_val[j-1] + a[j] )
We then plotted bars in descending order of height so that they are all visible. We added some hard-coded color schemes as well as it can generated sequentially from the RGB cube. The package can be installed with
pip install groupstackbar
Then, it can be imported as used as shown below. Also, there is a function (generate_dummy_data) to generate a dummy.csv sample data in order to test the functionality.
import matplotlib.pyplot as plt
import csv
import random
import groupstackbar
def generate_dummy_data():
with open('dummy_data.csv','w') as f:
csvwriter = csv.writer(f)
csvwriter.writerow(['Week','State_SEIR','Age_Cat','Value'])
for i in ['Week 1', 'Week 2', 'Week 3']: # 3 weeks
for j in ['S','E','I','R']:
for k in ['Age Cat 1', 'Age Cat 2', 'Age Cat 3', 'Age Cat 4', 'Age Cat 5']:
csvwriter.writerow([i,j,k, int(random.random()*100)])
generate_dummy_data()
f = groupstackbar.plot_grouped_stacks('dummy_data.csv', BGV=['State_SEIR','Week','Age_Cat'], extra_space_on_top = 30)
plt.savefig("output.png",dpi=500)
The plot_grouped_stacks() function of groupstackbar is reproduced below:
"""
Arguments:
filename:
a csv filename with 4 headers, H1, H2, H3 and H4. Each one of H1/H2/H3/H4 are strings.
the first three headers(H1/H2/H3) should identify a row uniquely
the fourth header H4 contains the value (H4 must be integer or floating; cannot be a string)
.csv files without headers will result in the first row being read as headers.
duplicates (relevant for csv inputs):
duplicate entries imply two rows with same <H1/H2/H3> identifier.
In case of duplicates aggregation is performed before proceeding, both the duplicates are binned together to increase the target value
BGV:a python list of three headers in order for stacking (Bars, Groups and Vertical Stacking)
for example, if BGV=[H2, H1, H3], the group stack plot will be such that:
maximum number of bars = number of unique values under column H2
maximum number of bars grouped together horizontally(side-by-side) = number of
unique values under column H1
maximum number of vertical stacks in any bar = number of unique values under column H2
"""
def plot_grouped_stacks(filename, BGV, fig_size=(10, 8),
intra_group_spacing=0.1,
inter_group_spacing=10,
y_loc_for_group_name=-5,
y_loc_for_hstack_name=5,
fontcolor_hstacks='blue',
fontcolor_groups='black',
fontsize_hstacks=20,
fontsize_groups=30,
x_trim_hstack_label=0,
x_trim_group_label=0,
extra_space_on_top=20
):
figure_ = plt.figure(figsize=fig_size)
size = figure_.get_size_inches()
figure_.add_subplot(1,1,1)
# sanity check for inputs; some trivial exception handlings
if intra_group_spacing >= 100:
print ("Percentage for than 100 for variables intra_group_spacing, Aborting! ")
return
else:
intra_group_spacing = intra_group_spacing*size[0]/100 # converting percentanges to inches
if inter_group_spacing >= 100:
print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ")
return
else:
inter_group_spacing = inter_group_spacing*size[0]/100 # converting percentanges to inches
if y_loc_for_group_name >= 100:
print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ")
return
else:
# the multiplier 90 is set empirically to roughly align the percentage value
# <this is a quick fix solution, which needs to be improved later>
y_loc_for_group_name = 90*y_loc_for_group_name*size[1]/100 # converting percentanges to inches
if y_loc_for_hstack_name >= 100:
print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ")
return
else:
y_loc_for_hstack_name = 70*y_loc_for_hstack_name*size[1]/100 # converting percentanges to inches
if x_trim_hstack_label >= 100:
print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ")
return
else:
x_trim_hstack_label = x_trim_hstack_label*size[0]/100 # converting percentanges to inches
if x_trim_group_label >= 100:
print ("Percentage for than 100 for variables inter_group_spacing, Aborting! ")
return
else:
x_trim_group_label = x_trim_group_label*size[0]/100 # converting percentanges to inches
fileread_list = []
with open(filename) as f:
for row in f:
r = row.strip().split(',')
if len(r) != 4:
print ('4 items not found # line ', c, ' of ', filename)
return
else:
fileread_list.append(r)
# inputs:
bar_variable = BGV[0]
group_variable = BGV[1]
vertical_stacking_variable = BGV[2]
first_line = fileread_list[0]
for i in range(4):
if first_line[i] == vertical_stacking_variable:
header_num_Of_vertical_stacking = i
break
sorted_order_for_stacking = []
for listed in fileread_list[1:]: # skipping the first line
sorted_order_for_stacking.append(listed[header_num_Of_vertical_stacking])
sorted_order_for_stacking = list(set(sorted_order_for_stacking))
list.sort(sorted_order_for_stacking)
sorted_order_for_stacking_V = list(sorted_order_for_stacking)
#####################
first_line = fileread_list[0]
for i in range(4):
if first_line[i] == bar_variable:
header_num_Of_bar_Variable = i
break
sorted_order_for_stacking = []
for listed in fileread_list[1:]: # skipping the first line
sorted_order_for_stacking.append(listed[header_num_Of_bar_Variable])
sorted_order_for_stacking = list(set(sorted_order_for_stacking))
list.sort(sorted_order_for_stacking)
sorted_order_for_stacking_H = list(sorted_order_for_stacking)
######################
first_line = fileread_list[0]
for i in range(4):
if first_line[i] == group_variable:
header_num_Of_bar_Variable = i
break
sorted_order_for_stacking = []
for listed in fileread_list[1:]: # skipping the first line
sorted_order_for_stacking.append(listed[header_num_Of_bar_Variable])
sorted_order_for_stacking = list(set(sorted_order_for_stacking))
list.sort(sorted_order_for_stacking)
sorted_order_for_stacking_G = list(sorted_order_for_stacking)
#########################
print (" Vertical/Horizontal/Groups ")
print (sorted_order_for_stacking_V, " : Vertical stacking labels")
print (sorted_order_for_stacking_H, " : Horizontal stacking labels")
print (sorted_order_for_stacking_G, " : Group names")
# +1 because we need one space before and after as well
each_group_width = (size[0] - (len(sorted_order_for_stacking_G) + 1) *
inter_group_spacing)/len(sorted_order_for_stacking_G)
# -1 because we need n-1 spaces between bars if there are n bars in each group
each_bar_width = (each_group_width - (len(sorted_order_for_stacking_H) - 1) *
intra_group_spacing)/len(sorted_order_for_stacking_H)
# colormaps
number_of_color_maps_needed = len(sorted_order_for_stacking_H)
number_of_levels_in_each_map = len(sorted_order_for_stacking_V)
c_map_vertical = {}
for i in range(number_of_color_maps_needed):
try:
c_map_vertical[sorted_order_for_stacking_H[i]] = sequential_colors[i]
except:
print ("Something went wrong with hardcoded colors!\n reverting to custom colors (linear in RGB) ")
c_map_vertical[sorted_order_for_stacking_H[i]] = getColorMaps(N = number_of_levels_in_each_map, type = 'S')
##
state_num = -1
max_bar_height = 0
for state in sorted_order_for_stacking_H:
state_num += 1
week_num = -1
for week in ['Week 1', 'Week 2','Week 3']:
week_num += 1
a = [0] * len(sorted_order_for_stacking_V)
for i in range(len(sorted_order_for_stacking_V)):
for line_num in range(1,len(fileread_list)): # skipping the first line
listed = fileread_list[line_num]
if listed[1] == state and listed[0] == week and listed[2] == sorted_order_for_stacking_V[i]:
a[i] = (float(listed[3]))
# get cumulative values
cum_val = [a[0]]
for j in range(1,len(a)):
cum_val.append( cum_val[j-1] + a[j] )
max_bar_height = max([max_bar_height, max(cum_val)])
plt.text(x= (week_num)*(each_group_width+inter_group_spacing) - x_trim_group_label
, y=y_loc_for_group_name, s=sorted_order_for_stacking_G[week_num], fontsize=fontsize_groups, color=fontcolor_groups)
# state labels need to be printed just once for each week, hence putting them outside the loop
plt.text(x= week_num*(each_group_width+inter_group_spacing) + (state_num)*(each_bar_width+intra_group_spacing) - x_trim_hstack_label
, y=y_loc_for_hstack_name, s=sorted_order_for_stacking_H[state_num], fontsize=fontsize_hstacks, color = fontcolor_hstacks)
if week_num == 1:
# label only in the first week
for i in range(len(sorted_order_for_stacking_V)-1,-1,-1):
# trick to make them all visible: Plot in descending order of their height!! :)
plt.bar( week_num*(each_group_width+inter_group_spacing) +
state_num*(each_bar_width+intra_group_spacing),
height=cum_val[i] ,
width=each_bar_width,
color=c_map_vertical[state][i],
label= state + "_" + sorted_order_for_stacking_V[i] )
else:
# no label after the first week, (as it is just repetition)
for i in range(len(sorted_order_for_stacking_V)-1,-1,-1):
plt.bar( week_num*(each_group_width+inter_group_spacing) +
state_num*(each_bar_width+intra_group_spacing),
height=cum_val[i] ,
width=each_bar_width,
color=c_map_vertical[state][i])
plt.ylim(0,max_bar_height*(1+extra_space_on_top/100))
plt.tight_layout()
plt.xticks([], [])
plt.legend(ncol=len(sorted_order_for_stacking_H))
return figure_
A pictorial readMe is attached to help the user quickly figure out the parameters to the function. Please feel free to raise an issue or start a pull request. Currently the input format is .csv files with 4 columns, but pandas data frame input can be added if necessary.
https://github.com/jimioke/groupstackbar
You're on the right track! In order to change the order of the bars, you should change the order in the index.
In [5]: df_both = pd.concat(dict(df1 = df1, df2 = df2),axis = 0)
In [6]: df_both
Out[6]:
I J
df1 A 0.423816 0.094405
B 0.825094 0.759266
C 0.654216 0.250606
D 0.676110 0.495251
df2 A 0.607304 0.336233
B 0.581771 0.436421
C 0.233125 0.360291
D 0.519266 0.199637
[8 rows x 2 columns]
So we want to swap axes, then reorder. Here's an easy way to do this
In [7]: df_both.swaplevel(0,1)
Out[7]:
I J
A df1 0.423816 0.094405
B df1 0.825094 0.759266
C df1 0.654216 0.250606
D df1 0.676110 0.495251
A df2 0.607304 0.336233
B df2 0.581771 0.436421
C df2 0.233125 0.360291
D df2 0.519266 0.199637
[8 rows x 2 columns]
In [8]: df_both.swaplevel(0,1).sort_index()
Out[8]:
I J
A df1 0.423816 0.094405
df2 0.607304 0.336233
B df1 0.825094 0.759266
df2 0.581771 0.436421
C df1 0.654216 0.250606
df2 0.233125 0.360291
D df1 0.676110 0.495251
df2 0.519266 0.199637
[8 rows x 2 columns]
If it's important that your horizontal labels show up in the old order (df1,A) rather than (A,df1), we can just swaplevels again and not sort_index:
In [9]: df_both.swaplevel(0,1).sort_index().swaplevel(0,1)
Out[9]:
I J
df1 A 0.423816 0.094405
df2 A 0.607304 0.336233
df1 B 0.825094 0.759266
df2 B 0.581771 0.436421
df1 C 0.654216 0.250606
df2 C 0.233125 0.360291
df1 D 0.676110 0.495251
df2 D 0.519266 0.199637
[8 rows x 2 columns]
Altair can be helpful here. Here is the produced plot.
Imports
import pandas as pd
import numpy as np
from altair import *
Dataset creation
df1=pd.DataFrame(10*np.random.rand(4,2),index=["A","B","C","D"],columns=["I","J"])
df2=pd.DataFrame(10*np.random.rand(4,2),index=["A","B","C","D"],columns=["I","J"])
Preparing dataset
def prep_df(df, name):
df = df.stack().reset_index()
df.columns = ['c1', 'c2', 'values']
df['DF'] = name
return df
df1 = prep_df(df1, 'DF1')
df2 = prep_df(df2, 'DF2')
df = pd.concat([df1, df2])
Altair plot
Chart(df).mark_bar().encode(y=Y('values', axis=Axis(grid=False)),
x='c2:N',
column=Column('c1:N') ,
color='DF:N').configure_facet_cell( strokeWidth=0.0).configure_cell(width=200, height=200)
Here is how I did with two charts including data replication.
Initial Data:
A B C D
0 level1 B1 456 326
1 level1 B3 694 1345
2 level1 B2 546 1471
3 level2 B1 687 806
4 level2 B3 877 1003
5 level2 B2 790 1004
Set multi index
data = data.set_index(["A", "B"])
Here is the code:
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import os
import seaborn as sns
matplotlib.style.use("seaborn-white")
ig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10,6))
ax_position = 0
y_offset = -120 # decrease value if you want to decrease the position of data labels
for metric in data.index.get_level_values('A').unique():
idx = pd.IndexSlice
subset = data.loc[idx[[metric], :],
['C', 'D']]
subset = subset.groupby(
subset.index.get_level_values('B')).sum()
ax = subset.plot(kind="bar", stacked=True, colormap="Pastel1",
ax=axes[ax_position])
ax.set_title(metric, fontsize=15, alpha=1.0)
ax.set_xlabel(metric, fontsize=15, alpha=0.0)
ax.set_ylabel("Values", fontsize=15)
ax.set_xticklabels(labels=['B1', "B2", "B3"], rotation=0,
minor=False, fontsize=15)
ax.set_ylim(0, 3000)
ax.set_yticks(range(0, 3000, 500), fontsize=15)
handles, labels = ax.get_legend_handles_labels()
ax_position += 1
for bar in ax.patches:
ax.text(
# Put the text in the middle of each bar. get_x returns the start
# so we add half the width to get to the middle.
bar.get_x() + bar.get_width() / 2,
# Vertically, add the height of the bar to the start of the bar,
# along with the offset.
bar.get_height() + bar.get_y() + y_offset,
# This is actual value we'll show.
round(bar.get_height()),
# Center the labels and style them a bit.
ha='center',
color='w',
weight='bold',
size=12
)
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
plt.tight_layout(pad=0.0, w_pad=-1.0, h_pad=0.0) # increase w_pad if you'd like to separate charts
axes[1].set_yticklabels("")
axes[1].set_ylabel("")
axes[0].legend().set_visible(False)
You can change the bar order by altering the index order (using sort in this case):
pd.concat([df1, df2], keys=['df1', 'df2']).sort_index(level=1).plot.bar(stacked=True)