Modern syntax for old-fashioned Keras command "Convolution2D"? - tensorflow

I was studying different CNN architectures to predict the CIFAR10 dataset, and I found this interesting Github repository:
https://gist.github.com/wielandbrendel/ccf1ff6f8f92139439be
I tried to run the model, but it was created in 6 years ago and the following Keras command is no longer valid:
model.add(Convolution2D(32, 3, 3, 3, border_mode='full'))
How is this command translated into the modern Keras syntax for Conv2D?
I get an error in Keras when I try to input the sequence of integers in Convolution2D(32, 3, 3, 3, ...)?
I guess 32 is the number of channels, and then we specify a 3x3 kernel size, but I am not sure about the meaning of the last 3 mentioned (4th position).
PS. Changing border_mode into padding = 'valid' or 'same' returns the following error:
model.add(Convolution2D(32, 3, 3, 3, padding='valid'))
TypeError: __init__() got multiple values for argument 'padding'

The gist there you're following is backdated and also has some issues. You don't need to follow this now. Here is the updated version of it. Try this.
Imports and DataSet
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (Dense, Dropout, Activation,
Flatten, Conv2D, MaxPooling2D)
from tensorflow.keras.optimizers import SGD, Adadelta, Adagrad
import tensorflow as tf
# parameters
batch_size = 32
nb_classes = 10
nb_epoch = 5
# the data, shuffled and split between tran and test sets
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
# convert class vectors to binary class matrices
Y_train = tf.keras.utils.to_categorical(y_train, nb_classes)
Y_test = tf.keras.utils.to_categorical(y_test, nb_classes)
# train model
X_train = X_train.astype("float32") / 255
X_test = X_test.astype("float32") / 255
X_train.shape, y_train.shape, X_test.shape, y_test.shape
((50000, 32, 32, 3), (50000, 1), (10000, 32, 32, 3), (10000, 1))
Modeling
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
Compile and Run
model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch)
# test score & top 1 performance
score = model.evaluate(X_test, Y_test, batch_size=batch_size)
y_hat = model.predict(X_test)
yhat = np.argmax(y_hat, 1)
top1 = np.mean(yhat == np.squeeze(y_test))
print('Test score/Top1', score, top1)

The Convolutional2D is now named Conv2D, but there is still an alias for Convolutional2D, so that's not a problem.
The border_mode argument is not available anymore, the equivalent is padding, with options valid or same.
Try both to see if any of those fits the shapes of the outputs and allows to code to work.

Related

Input 0 of layer "conv2d_transpose_4" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 100)

I am trying to develop a GAN, I have created the generator and the discriminator and now I am trying to train it. I am using the Mnist dataset but I plan to use some more. The problem is that when I train it I get this error: Input 0 of layer "conv2d_transpose_4" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 100)
I don't really know if the problem is in the networks or in the data used to train the GAN, can someone tell me how should I train it or where the problem is?
imports:
import tensorflow
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Flatten, Input, BatchNormalization,
LeakyReLU, Reshape
from keras.layers import Conv2D, Conv2DTranspose, MaxPooling2D
from tensorflow.keras.optimizers import Adam
from keras import backend as K
from keras.utils import np_utils
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
generator:
def generator():
model = Sequential()
model.add(Conv2DTranspose(32, (3,3), strides=(2,
2), activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(BatchNormalization())
model.add(Dense(512,
activation=LeakyReLU(alpha=0.2)))
model.add(BatchNormalization(momentum=0.7))
model.build()
model.summary()
return model
discriminator:
def discriminator():
model = Sequential()
model.add(Conv2D(32, (5,5), strides=(2, 2),
activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512,
activation=LeakyReLU(alpha=0.2)))
model.add(Flatten())
model.add(BatchNormalization(momentum=0.7))
model.add(Dense(1, activation='sigmoid'))
model.build()
model.summary()
return model
train function:
def train(epochs, batch_size, save_interval):
(x_train, _), (_, _) = mnist.load_data()
x_train = (x_train.astype(np.float32) - 127.5) / 127.5
x_train = np.expand_dims(x_train, axis=3)
half_batch = int(batch_size / 2)
for epoch in range(epochs):
idx = np.random.randint(0, x_train.shape[0], half_batch)
imgs = x_train[idx]
noise = np.random.normal(0, 1, (half_batch, 100))
gen_imgs = generator.predict(noise)
d_loss_real = discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
d_loss_fake = discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
noise = np.random.normal(0, 1, (batch_size, 100))
valid_y = np.array([1] * batch_size)
g_loss = combined.train_on_batch(noise, valid_y)
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
if epoch % save_interval == 0:
save_imgs(epoch)
Data used:
img_rows = 28
img_cols = 28
channels = 1
img_shape = (img_rows, img_cols, channels)
optimizer = Adam(0.0002, 0.5)
discriminator = discriminator()
discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
generator = generator()
generator.compile(loss='binary_crossentropy',
optimizer=optimizer)
z = Input(shape=(100,))
img = generator(z) #error
discriminator.trainable = False
valid = discriminator(img)
combined = Model(z, valid)
combined.compile(loss='binary_crossentropy',
optimizer=optimizer)
train(epochs=100000, batch_size=32,
save_interval=10)
generator.save('generator_model.h5')
The problem is coming from the first Flatten layer in the Discriminator model, which is converting your n-dimensional tensor to a 1D tensor. Since a MaxPooling2D layer cannot work with a 1D tensor, you are seeing that error. If you remove it, it should work:
def discriminator():
model = Sequential()
model.add(Conv2D(32, (5,5), strides=(2, 2),
activation='relu', use_bias=False,
input_shape=img_shape))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(Dropout(0.5))
model.add(BatchNormalization(momentum=0.3))
model.add(LeakyReLU(alpha=0.2))
model.add(Flatten())
model.add(Dense(512,
activation=LeakyReLU(alpha=0.2)))
model.add(BatchNormalization(momentum=0.7))
model.add(Dense(1, activation='sigmoid'))
model.build()
model.summary()
return model
Update 1:
Try rewriting your Generator model like this:
def generator():
model = Sequential()
model = tf.keras.Sequential()
model.add(Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
model.summary()
return model
It should then work, but you should definitely go through this tutorial to understand everything.
First the discriminator is wrong you expecting the input noise to generator with same diemnsions where it is similaities for crossentrory, noises can generate into multiple levels where the batch is create !
WHen you looking at each layer you will see how much the layer identification need !
Simply doing by measure the input / output you don't need to removed or edit meaning of the model.
It is not the generator flase when you input is wrong try see the discriminator layers where they are training on the batch sizes and the genrated input image.
( It is noises similarlities cross-entrophy )
Model layers and shapes is not chagne when you use the input correct way
### name='conv2d_transpose_input'), name='conv2d_transpose_input', description="created by layer 'conv2d_transpose_input'"),
### but it was called on an input with incompatible shape (None, 100).
model = Sequential()
model.add(Conv2DTranspose(32, (3,3), strides=(2,
2), activation='relu', use_bias=False,
input_shape=(28, 28, 1)))
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2DTranspose(128,(3,3),strides=
(2,2), activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
########################
def discriminator():
model = Sequential()
### Input 0 of layer "conv2d" is incompatible with the layer: expected axis -1 of input shape to have value 1, but received input with shape (None, 114, 114, 512)
### model.add(tf.keras.layers.Reshape((1, 100), input_shape=img_shape))
model.add(Conv2D(32, (5,5), strides=(2, 2),
activation='relu', use_bias=False,
input_shape=( 28, 28, 1))) ### img_shape
model.add(BatchNormalization(momentum=0.3))
model.add(Conv2D(64,(5,5),strides=(2,2),
activation='relu', padding='same',
use_bias=False))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(LeakyReLU(alpha=0.2))
...

Merging tensors based on a key

I am dealing with a problem in which network design is such that it requires merging output of one part of the network with a tabular input(other input) data based on a key and training the network further with the merged data. It appeared that there is no way two tensors can be merged based on a key. Hence though of converting tensor to numpy to pandas data and them merging. The merged data would be converted back to tensor and used further in the network. Below is the code for it:
def build_convnet(shape=(112, 112, 1)):
from keras.layers import Conv2D, BatchNormalization, MaxPool2D, GlobalMaxPool2D
momentum = .9
model = keras.Sequential()
model.add(Conv2D(64, (3,3), input_shape=shape,
padding='same', activation='relu'))
model.add(Conv2D(64, (3,3), padding='same', activation='relu'))
model.add(BatchNormalization(momentum=momentum))
model.add(MaxPool2D())
model.add(Conv2D(128, (3,3), padding='same', activation='relu'))
model.add(Conv2D(128, (3,3), padding='same', activation='relu'))
model.add(BatchNormalization(momentum=momentum))
model.add(MaxPool2D())
model.add(Conv2D(256, (3,3), padding='same', activation='relu'))
model.add(Conv2D(256, (3,3), padding='same', activation='relu'))
model.add(BatchNormalization(momentum=momentum))
model.add(MaxPool2D())
model.add(Conv2D(512, (3,3), padding='same', activation='relu'))
model.add(Conv2D(512, (3,3), padding='same', activation='relu'))
model.add(BatchNormalization(momentum=momentum))
# flatten...
model.add(GlobalMaxPool2D())
return model
def action_model(shape=(3, 112, 112, 1)):
from keras.layers import TimeDistributed, GRU, Dense, Dropout, Concatenate
# Create our convnet with (224, 224, 3) input shape
convnet = build_convnet(shape[1:])
# then create our final model
model = keras.Sequential()
# add the convnet with (5, 224, 224, 3) shape
model.add(TimeDistributed(convnet, input_shape=shape))
# here, you can also use GRU or LSTM
model.add(GRU(64))
# and finally, we make a decision network
model.add(Dense(1024, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(512, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(64, activation='relu'))
model.add(Dense(4, activation='relu'))
return model
# create the tab_data and cnn_gru models
tab_dt = keras.Input(shape=(trainX.shape[1],))
cnn_gru = action_model(X_train.shape[1:])
# converting tensor to numpy array and merging with a tabular data on a key(Patient)
cnn_gru_np = cnn_gru.output.eval()
cnn_gru_pd = pd.Dataframe(cnn_gru_np, names = ["V1", "V2", "V3", "V4"])
cnn_gru_pd["Patient"] = train_p
tab_dt_np = tab_dt.eval()
tab_dt_pd = pd.Dataframe(tab_dt_np, names = ["Weeks", "Percent", "Age", "Sex_Male", "SmokingStatus_Ex-smoker", "SmokingStatus_Never smoked"])
tab_dt_pd["Patient"] = train_p.numpy()
combinedInput_pd = pd.merge(tab_dt_pd, cnn_gru_pd, on = ["Patient"], how = "left")
combinedInput_pd.drop(["Patient"], axis = 1, inplace = True)
combinedInput_np = np.array(combinedInput_pd)
combinedInput = tf.convert_to_tensor(combinedInput_np)
# being our regression head
x = Dense(8, activation="relu")(combinedInput)
x = Dense(1, activation="relu")(x)
model = Model(inputs=[tab_dt, cnn_gru.input], outputs=x)
I am getting the below error for eval function in the line "cnn_gru_np = cnn_gru.output.eval()"
ValueError: Cannot evaluate tensor u`enter code here`sing `eval()`: No default session is registered. Use `with sess.as_default()` or pass an explicit session to `eval(session=sess)`
Please help with suggesting what is going wrong here.
The reason you're getting a ValueError is that the output of a keras model isn't an eager tensor, and thus does not support eval like that.
Just try
some_model = keras.Sequential([keras.layers.Dense(10, input_shape=(5,))])
print(type(some_model.output))
print(type(tf.zeros((2,))))
some_model.output.eval()
# <class 'tensorflow.python.framework.ops.Tensor'>
# <class 'tensorflow.python.framework.ops.EagerTensor'>
# ValueError
However, there is a bigger problem with your approach: there is no connected computation graph from your models inputs to your models outputs because none of the pandas stuff are tensorflow ops. I.E. even if you were able to use eager tensors, you still wouldn't be able to train your model with automatic differentiation.
You're going to have to specify your entire model in tf I'm afraid.
Maybe you could do the data processing before giving it as input to the model? Then you only need split concat ops to put everything together?

CNN with multiple conv3d in keras

I am trying to create a CNN model in Keras with multiple conv3d to work on cifar10 dataset. But facing the following issue:
ValueError: ('The specified size contains a dimension with value <=
0', (-8000, 256))
Below is my code that I am trying to execute.
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv3D, MaxPooling3D
from keras.optimizers import SGD
import os
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 20
learning_rate = 0.01
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
img_rows = x_train.shape[1]
img_cols = x_train.shape[2]
colors = x_train.shape[3]
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1,colors, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1,colors, img_rows, img_cols)
input_shape = (1, colors, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, colors, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, colors, 1)
input_shape = (img_rows, img_cols, colors, 1)
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 3),activation='relu',input_shape=input_shape))
model.add(Conv3D(32, kernel_size=(3, 3, 3),activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 1)))
model.add(Dropout(0.25))
model.add(Conv3D(64, kernel_size=(3, 3, 3),activation='relu'))
model.add(Conv3D(64, kernel_size=(3, 3, 3),activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 1)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
sgd=SGD(lr=learning_rate)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=sgd,
metrics=['accuracy'])
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
I have tried with single conv3d and it worked but the accuracy was very low. Code snippet as below:
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 3),activation='relu',input_shape=input_shape))
model.add(MaxPooling3D(pool_size=(2, 2, 1)))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
Problem
The problem is with the color channel: it equals 3 initially and you're applying the convolution with size 3 and padding='valid'. After the very first Conv3D, the output tensor is:
(None, 30, 30, 1, 32)
... and no more convolutions can be applied to that dimension. The trivial example that you provide is working simply because there's just one convolutional layer.
Solution
One option for you is to set padding='same', so that the tensor shape is preserved:
(None, 32, 32, 3, 32)
However, to me the convolution over colors doesn't add a lot of value, so I'd go with this model:
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 1), activation='relu', input_shape=input_shape))
model.add(Conv3D(32, kernel_size=(3, 3, 1), activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 1)))
model.add(Dropout(0.25))
model.add(Conv3D(64, kernel_size=(3, 3, 1), activation='relu'))
model.add(Conv3D(64, kernel_size=(3, 3, 1), activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 1)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(10, activation='softmax'))
In practice,in convolution layer the dimension is preserved and in pooling layer you can down sample.
The problem is you are losing dimensionality here. So you can set padding same or use 3X3 filters with one channel instead of using 3 channels.

tensorflow core dumped after check failed

System information
**I leveraged keras using TensorFlow backend to train a batch of 300*300*3 rgb image.
Linux CentOS 7:
TensorFlow installed from binary:
TensorFlow version 1.4/1.5:
Python version 3.6:
Describe the problem
I used the following code to build CNN model
model = Sequential()
model.add(Convolution2D(32, (5, 5), activation='relu', input_shape=(3, height, width), data_format='channels_first'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=36, kernel_size=(5, 5), activation='relu'))
model.add(Conv2D(32, (3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
batch_steps = get_training_data_batch()
model.fit_generator(training_data_generator(), steps_per_epoch=batch_steps, epochs=15, verbose=2)
model.summary()
x_test, y_test = get_testing_data()
score = model.evaluate(x_test, y_test, verbose=0)
print("score:", score[1])
batch_size = 2000
def training_data_generator():
for benchmark_num in training_benchmark_num_list:
x_data, y_data = get_feature_data(benchmark_num)
samples_totals = x_data.shape[0]
print("samples totals:", samples_totals)
batch = samples_totals / batch_size + 1
for x in range(0, int(batch), 1):
x_sub_data = x_data[x*batch_size:(x+1)*batch_size]
y_sub_data = y_data[x*batch_size:(x+1)*batch_size]
x_train = x_sub_data.reshape(x_sub_data.shape[0], 3, height, width)
x_train = x_train.astype('float32')
x_train /= 255
y_train = np_utils.to_categorical(y_sub_data, 2)
yield (x_train, y_train)
Program shows the error before code dumped:
F tensorflow/core/kernels/maxpooling_op.cc:177]
Check failed: input_backprop_index >= in_start && input_backprop_index < in_end Invalid input backprop index: -1491167680, 2803712000, 2806515712
I traced tensorflow source code, it should be check operation. And backprop index can't be negative. I don't know tensorflow well, why can appear such problem? I think this error is root cause of code dumped. Could you help me solve this problem?

About use keras for multi-label classification

I try to train a multi-labels classifier, I used sigmoid units in the output layer and then use "binary_crossentrpy" loss. Current problem is the results of the training and testing were ideal, values of loss and accuracy were great.But when I used model.predict() predicted label, the output don't match the real label value. How to change code to solve it?
The shape of the training set and testing set is (-1, 1, 300, 300), the shape of the target label is (-1, 478), I have 478 in total.
My complete code:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Flatten, Dropout
from keras.optimizers import Adam
X = np.load('./data/X_train.npy')
y = np.load('./data/Y_train.npy')
X_train, y_train = X[:2000], y[:2000]
X_test, y_test = X[2000:], y[2000:]
model = Sequential()
model.add(Convolution2D(nb_filter=32, nb_row=5, nb_col=5, padding='same', input_shape=(1, 300, 300)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 5, 5, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(478))
model.add(Activation('sigmoid'))
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
print('Training ------------')
model.fit(X_train, y_train, epochs=5, batch_size=300, validation_data=(X_test, y_test), verbose=1)
model.save('model.h5')
Could you help me to find a solution? Thanks!
Have you tried to filter the values based on a threshold?
pred = model.predict(x_test)
pred[pred>=0.5] = 1
pred[pred<0.5] = 0
print(pred[0:5])