Solidity: Are these sentences the same? Or do they mean different things? - solidity

In order to calling a function 'isContract', with the parameter 'to' being an address, are valid both ways? :
to.isContract()
isContract(to)
Does Solidity allow both ways?
I have found both in different codes, and I don't know if just 'isContract(to)' is the right one, or if 'to.isContract()' means another different thing.
Thanks a lot for your help.

They're not the same.
to.isContract() suggests that you have defined an interface (in your code) that defines a isContract() function, and that the contract deployed at the to address implements this interface.
pragma solidity ^0.8.0;
interface ExternalContract {
function isContract() external returns (bool);
}
contract MyContract {
function foo() external {
ExternalContract to = ExternalContract(address(0x123));
bool returnedValue = to.isContract(); // calling `to`'s function `isContract()`
}
}
isContract(to) calls an external or internal function in your contract.
pragma solidity ^0.8.0;
contract MyContract {
function foo() external {
address to = address(0x123);
bool returnedValue = isContract(to); // calling your function `isContract()`
}
function isContract(address to) internal returns (bool) {
return true;
}
}
Edit: I forgot about one more case - using a library containing the isContract() function for an address. Example OpenZeppelin implementation: definition, usage.
library AddressLibrary {
function isContract (address _address) {
return true;
}
}
contract MyContract {
using AddressLibrary for address;
function foo() external {
address to = address(0x123);
bool returnedValue to.isContract(); // calling your function `isContract(to)`
}

Related

How to access function of a contract instantiated with new?

I'm instantiating the contract called "Elector", applying new inside the function below, so far it works and the result is this one:
The contract is instantiated in memory with this address.
So, how do I access the getInformation() function inside this contract to use both in this main contract and in ethers in the dApp?
MAIN CONTRACT:
function updateConfirmedVotes(uint candidateId, VoteType electorVoteType) public {
_updateTotalElectoresVoted();
_pollingByCandidate[candidateId].votes.total += 1;
_pollingByCandidate[candidateId].votes.totalPercentage = _calculePercentageOfVote(_pollingByCandidate[candidateId].votes.total);
_pollingByCandidate[candidateId].electors.push(new _Elector({wallet: msg.sender, vote: electorVoteType}));
}
ELECTOR CONTRACT:
contract _Elector {
address private _wallet;
VoteType private _vote = VoteType.DID_NOT_VOTED;
constructor(address wallet, VoteType vote) {
_wallet = wallet;
_vote = vote;
}
function getInformation() external view returns (address, VoteType) {
return (_wallet, _vote);
}
}
Define a contract type variable within your Main contract, passing it pointer to the newly deployed Elector contract. Then you can invoke external/public functions defined by the contract type on the external address.
pragma solidity ^0.8;
contract Elector {
// ...
}
contract Main {
Elector elector;
function deployElector() external {
// returns pointer to the newly deployed contract
elector = new Elector();
}
function getInformationFromElector() external view returns (address, Elector.VoteType) {
// calls the external contract
return elector.getInformation();
}
}

How to run multiples contracts functionalities in a single contract Solidity

I'm new to Solidity but I can't find much information about my problem.
For example, I want to make different contracts for different functionalities (I see them as classes)
For example
Main contract
// SPDX-License-Identifier: None
pragma solidity >=0.8.6;
import "./AuthContract.sol";
contract Contract {
string public message;
constructor() {
message = "test";
}
function getMessage() public view returns(string memory) {
return message;
}
}
and second contract
contract Auth {
struct UserDetail {
address addr;
string name;
string password;
string CNIC;
bool isUserLoggedIn;
}
mapping(address => UserDetail) user;
// user registration function
function register(
address _address,
string memory _name,
string memory _password,
string memory _cnic
) public returns (bool) {
require(user[_address].addr != msg.sender);
user[_address].addr = _address;
user[_address].name = _name;
user[_address].password = _password;
user[_address].CNIC = _cnic;
user[_address].isUserLoggedIn = false;
return true;
}
// user login function
function login(address _address, string memory _password)
public
returns (bool)
{
if (
keccak256(abi.encodePacked(user[_address].password)) ==
keccak256(abi.encodePacked(_password))
) {
user[_address].isUserLoggedIn = true;
return user[_address].isUserLoggedIn;
} else {
return false;
}
}
// check the user logged In or not
function checkIsUserLogged(address _address) public view returns (bool) {
return (user[_address].isUserLoggedIn);
}
// logout the user
function logout(address _address) public {
user[_address].isUserLoggedIn = false;
}
}
How could I use the functionalities from that contract in the main contract?
Is such a thing possible in the blockchain?
I am quite new here also but i can solve your problem, if not solve i can lead you to a good path .
so firstly you said you want to create multiple contract for different functionalities, this is good but keep in my you are going to exhaust a lot of gas.
so the answer to your problem is easy you can just read it and implement it.
if you want to use a contract in the Another contract (main in your case) you can do it in two ways(according to my knowledge there might be other).
using new keyword
using address of your previously deployed contract
we will be using the First case as i suppose you havenot deployed the second contract yet
In Order to do it you can use
Auth myObj=new Auth();
This will create a new instance of the contract Auth in your main contract and now you can use the Auth contract's function in your Main contract.you can create a function copy the above line and you can use the Functions using dot operator.
myObj.register(_address,_name,moreandmore);
I believe this will solve your problem if not you can ask it.
Thank You!

Solidity - why does fallback() get called even though address.call{value:msg.value}("") does not have data?

The following contract calls another contract using an interface method (code to change):
pragma solidity 0.8.7;
interface MyStorage {
function setStorageValue(uint256) external;
}
contract StorageFactory {
uint256 storageValue;
constructor(uint256 _storageValue) {
storage = _storageValue;
}
function initStorage(MyStorage store) public payable {
store.setStorageValue(storageValue);
address payable storeAddress = payable(address(store));
storeAddress.call{value: msg.value}("");
}
}
Following is the StorageContract (code cannot be changed):
pragma solidity 0.8.7;
contract Storage {
int _storageValue;
function setStorageValue(int storageValue) public {
_storageValue = storageValue;
}
receive() external payable {
require(_storageValue == -1 || address(this).balance <= uint(_storageValue), "Invalid storage value");
}
fallback() external {
_storageValue = -1;
}
}
I use a test to call initStorage of the first contract by passing a Storage object, where the test is meant to fail because the value is set to a large amount. But somehow, the fallback() function seems to get called, setting the value to -1. I can't figure out why. Any help is appreciated.
Due to the solidity doc:
The fallback function is executed on a call to the contract if none of the other functions match the given function signature, or if no data was supplied at all and there is no receive Ether function. The fallback function always receives data, but in order to also receive Ether it must be marked payable.
Your function getting called because there's no overloading for the function
function setStorageValue(uint256 storageValue) public
So change the storageValue from int to uint256 will help.

What is the type of `this` object in solidity

In the following claimPayment function that is used to claim a payment made earlier to this contract, the line bytes32 message = prefixed(keccak256(abi.encodePacked(msg.sender, amount, nonce, this))); has this as part of the signed message. This makes me wonder what is this and what the type of this is. If I'm returning this in a function, what type is used for it? Thanks.
function claimPayment(uint256 amount, uint256 nonce, bytes memory signature) public {
require(!usedNonces[nonce]);
usedNonces[nonce] = true;
// this recreates the message that was signed on the client
bytes32 message = prefixed(keccak256(abi.encodePacked(msg.sender, amount, nonce, this)));
require(recoverSigner(message, signature) == owner);
payable(msg.sender).transfer(amount);
}
this is a pointer to the current class instance, as in many other programming languages. You can for example point to public methods:
pragma solidity ^0.8.0;
contract MyContract {
function foo() external {
this.bar();
}
function bar() public {
}
}
When this is typecasted, it takes a form of the address, where the current instance is deployed.
pragma solidity ^0.8.0;
contract MyContract {
function foo() external view returns (bytes memory) {
return abi.encodePacked(this);
}
function bar() external view returns (address) {
return address(this);
}
}

How to pass struct from contract A to contract B? Best practice

I found such way, when one general interface with structure is created and then contract A and B inherit the interface with structure.
But I'm wondering if there are other ways?
And could there be a case where a contract with a structure can be updated?
pragma experimental ABIEncoderV2;
pragma solidity ^0.6.0;
interface params {
struct structTest {
uint256 data;
}
}
contract contractA is params{
function testCall(structTest calldata _structParams) public pure returns (uint256){
return _structParams.data;
}
}
contract contractB is params{
contractA aContractInstance;
constructor (address _a) public {
aContractInstance = contractA(_a);
}
function test(structTest calldata _structParams) public view returns(uint256){
// call contract A from B and pass structure
return aContractInstance.testCall(_structParams);
}
}
interface IContractA {
struct User {
address addr;
}
function getUser(aaddress addr) external view returns (User memory user);
}
contract contractB{
function getUserFromContractA(address addr) public view
returns (IContractA.User memory user)
{
ContractA = IContractA(addrContractA);
user = ContractA.getUser(addr);
}
}