I have a dataframe that looks like this:
In[1]: df.head()
Out[1]:
dataset x y
1 56 45
1 31 67
7 22 85
2 90 45
2 15 42
There are about 4000 more rows. x and y is grouped by the datasets. I am trying to plot a jointplot for each dataset separately using seaborn. This is what I can come up so far:
import seaborn as sns
g = sns.FacetGrid(df, col="dataset", col_wrap=3)
g.map_dataframe(sns.scatterplot, x="x", y="y", color = "#7db4a2")
g.map_dataframe(sns.histplot, x="x", color = "#7db4a2")
g.map_dataframe(sns.histplot, y="y", color = "#7db4a2")
g.add_legend();
but there are all overlapped. How do I make a proper jointplot for each dataset in a subplot? Thank you in advanced and cheers!
You can use groupby on your dataset column, then use sns.jointgrid(), and then finally add your scatter plot and KDE plot to the jointgrid.
Here is an example using a random seed generator with numpy. I made three "datasets" and random x,y values. See the Seaborn jointgrid documentation for ways to customize colors, etc.
### Build an example dataset
np.random.seed(seed=1)
ds = (np.arange(3)).tolist()*10
x = np.random.randint(100, size=(60)).tolist()
y = np.random.randint(20, size=(60)).tolist()
df = pd.DataFrame(data=zip(ds, x, y), columns=["ds", "x", "y"])
### The plots
for _ds, group in df.groupby('ds'):
group = group.copy()
g = sns.JointGrid(data=group, x='x', y='y')
g.plot(sns.scatterplot, sns.kdeplot)
I have a DataFrame and need to make a scatter-plot from it.
I need to use 2 columns as the x-axis and y-axis and only need to plot 2 rows from the entire dataset. Any suggestions?
For example, my dataframe is below (50 states x 4 columns). I need to plot 'rgdp_change' on the x-axis vs 'diff_unemp' on the y-axis, and only need to plot for the states, "Michigan" and "Wisconsin".
So from the dataframe, you'll need to select the rows from a list of the states you want: ['Michigan', 'Wisconsin']
I also figured you would probably want a legend or some way to differentiate one point from the other. To do this, we create a colormap assigning a different color to each state. This way the code is generalizable for more than those two states.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
# generate a random df with the relevant rows, columns to your actual df
df = pd.DataFrame({'State':['Alabama', 'Alaska', 'Michigan', 'Wisconsin'], 'real_gdp':[1.75*10**5, 4.81*10**4, 2.59*10**5, 1.04*10**5],
'rgdp_change': [-0.4, 0.5, 0.4, -0.5], 'diff_unemp': [-1.3, 0.4, 0.5, -11]})
fig, ax = plt.subplots()
states = ['Michigan', 'Wisconsin']
colormap = cm.viridis
colorlist = [colors.rgb2hex(colormap(i)) for i in np.linspace(0, 0.9, len(states))]
for i,c in enumerate(colorlist):
x = df.loc[df["State"].isin(['Michigan', 'Wisconsin'])].rgdp_change.values[i]
y = df.loc[df["State"].isin(['Michigan', 'Wisconsin'])].diff_unemp.values[i]
legend_label = states[i]
ax.scatter(x, y, label=legend_label, s=50, linewidth=0.1, c=c)
ax.legend()
plt.show()
Use the dataframe plot method, but first filter the sates you need using index isin method:
states = ["Michigan", "Wisconsin"]
df[df.index.isin(states)].plot(kind='scatter', x='rgdp_change', y='diff_unemp')
I want to plot different values of x and y-axis from different CSVs into a simple plot.
csv1:
Time Buff
1 5
2 10
3 15
csv2:
Time1 Buff1
2 3
4 6
5 9
I have 5 different CSVs. I tried plotting to concatenate the dataframes into a single frame and plot it. But I was able to plot with only one x-axis:
df = pd.read_csv('csv1.txt)
df1 = pd.read_csv('csv2.txt)
join = pd.concat([df, df1], axis=1)
join.plot(x='Time', y=['Buff', 'Buff1'], kind='line')
join.plot(x='Time', y='Buff', x='Time1', y='Buff1') #doesn't work
I end up getting a plot with reference with only one x-axis (csv1). But how to plot both x and y column from the CSVs into the same plot?
you can plot two dataframes in the same axis if you specify that axis with ax=. Notice that I created the figure and axis using subplots before i plotted either of the dataframes.
import pandas as pd
import matplotlib.pyplot as plt
f,ax = plt.subplots()
df = pd.DataFrame({'Time':[1,2,3],'Buff':[5,4,3]})
df1 = pd.DataFrame({'Time1':[2,3,4],'Buff1':[5,7,8]})
df.plot(x='Time',y='Buff',ax=ax)
df1.plot(x='Time1',y='Buff1',ax=ax)
I have a few Pandas DataFrames sharing the same value scale, but having different columns and indices. When invoking df.plot(), I get separate plot images. what I really want is to have them all in the same plot as subplots, but I'm unfortunately failing to come up with a solution to how and would highly appreciate some help.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes is an array which holds the different subplot axes, and you can access one just by indexing axes.
If you want a shared x-axis, then you can provide sharex=True to plt.subplots.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True and layout=(,) within the pandas plot function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot() which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow and the number of columns ncol. Also, you need to make list of data frames df_list which you wanted to plot.
You can use the familiar Matplotlib style calling a figure and subplot, but you simply need to specify the current axis using plt.gca(). An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
You may not need to use Pandas at all. Here's a matplotlib plot of cat frequencies:
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)
f, axes = plt.subplots(2, 1)
for c, i in enumerate(axes):
axes[c].plot(x, y)
axes[c].set_title('cats')
plt.tight_layout()
Option 1: Create subplots from a dictionary of dataframes with long (tidy) data
Assumptions:
There is a dictionary of multiple dataframes of tidy data that are either:
Created by reading in from files
Created by separating a single dataframe into multiple dataframes
The categories, cat, may be overlapping, but all dataframes don't necessarily contain all values of cat
hue='cat'
This example uses a dict of dataframes, but a list of dataframes would be similar.
If the dataframes are wide, use pandas.DataFrame.melt to convert them to long form.
Because dataframes are being iterated through, there's no guarantee that colors will be mapped the same for each plot
A custom color map needs to be created from the unique 'cat' values for all the dataframes
Since the colors will be the same, place one legend to the side of the plots, instead of a legend in every plot
Tested in python 3.10, pandas 1.4.3, matplotlib 3.5.1, seaborn 0.11.2
Imports and Test Data
import pandas as pd
import numpy as np # used for random data
import matplotlib.pyplot as plt
from matplotlib.patches import Patch # for custom legend - square patches
from matplotlib.lines import Line2D # for custom legend - round markers
import seaborn as sns
import math import ceil # determine correct number of subplot
# synthetic data
df_dict = dict()
for i in range(1, 7):
np.random.seed(i) # for repeatable sample data
data_length = 100
data = {'cat': np.random.choice(['A', 'B', 'C'], size=data_length),
'x': np.random.rand(data_length), 'y': np.random.rand(data_length)}
df_dict[i] = pd.DataFrame(data)
# display(df_dict[1].head())
cat x y
0 B 0.944595 0.606329
1 A 0.586555 0.568851
2 A 0.903402 0.317362
3 B 0.137475 0.988616
4 B 0.139276 0.579745
# display(df_dict[6].tail())
cat x y
95 B 0.881222 0.263168
96 A 0.193668 0.636758
97 A 0.824001 0.638832
98 C 0.323998 0.505060
99 C 0.693124 0.737582
Create color mappings and plot
# create color mapping based on all unique values of cat
unique_cat = {cat for v in df_dict.values() for cat in v.cat.unique()} # get unique cats
colors = sns.color_palette('tab10', n_colors=len(unique_cat)) # get a number of colors
cmap = dict(zip(unique_cat, colors)) # zip values to colors
col_nums = 3 # how many plots per row
row_nums = math.ceil(len(df_dict) / col_nums) # how many rows of plots
# create the figue and axes
fig, axes = plt.subplots(row_nums, col_nums, figsize=(9, 6), sharex=True, sharey=True)
# convert to 1D array for easy iteration
axes = axes.flat
# iterate through dictionary and plot
for ax, (k, v) in zip(axes, df_dict.items()):
sns.scatterplot(data=v, x='x', y='y', hue='cat', palette=cmap, ax=ax)
sns.despine(top=True, right=True)
ax.legend_.remove() # remove the individual plot legends
ax.set_title(f'dataset = {k}', fontsize=11)
fig.tight_layout()
# create legend from cmap
# patches = [Patch(color=v, label=k) for k, v in cmap.items()] # square patches
patches = [Line2D([0], [0], marker='o', color='w', markerfacecolor=v, label=k, markersize=8) for k, v in cmap.items()] # round markers
# place legend outside of plot; change the right bbox value to move the legend up or down
plt.legend(title='cat', handles=patches, bbox_to_anchor=(1.06, 1.2), loc='center left', borderaxespad=0, frameon=False)
plt.show()
Option 2: Create subplots from a single dataframe with multiple separate datasets
The dataframes must be in a long form with the same column names.
This option uses pd.concat to combine multiple dataframes into a single dataframe, and .assign to add a new column.
See Import multiple csv files into pandas and concatenate into one DataFrame for creating a single dataframes from a list of files.
This option is easier because it doesn't require manually mapping colors to 'cat'
Combine DataFrames
# using df_dict, with dataframes as values, from the top
# combine all the dataframes in df_dict to a single dataframe with an identifier column
df = pd.concat((v.assign(dataset=k) for k, v in df_dict.items()), ignore_index=True)
# display(df.head())
cat x y dataset
0 B 0.944595 0.606329 1
1 A 0.586555 0.568851 1
2 A 0.903402 0.317362 1
3 B 0.137475 0.988616 1
4 B 0.139276 0.579745 1
# display(df.tail())
cat x y dataset
595 B 0.881222 0.263168 6
596 A 0.193668 0.636758 6
597 A 0.824001 0.638832 6
598 C 0.323998 0.505060 6
599 C 0.693124 0.737582 6
Plot a FacetGrid with seaborn.relplot
sns.relplot(kind='scatter', data=df, x='x', y='y', hue='cat', col='dataset', col_wrap=3, height=3)
Both options create the same result, however, it's less complicated to combine all the dataframes, and plot a figure-level plot with sns.relplot.
Building on #joris response above, if you have already established a reference to the subplot, you can use the reference as well. For example,
ax1 = plt.subplot2grid((50,100), (0, 0), colspan=20, rowspan=10)
...
df.plot.barh(ax=ax1, stacked=True)
Here is a working pandas subplot example, where modes is the column names of the dataframe.
dpi=200
figure_size=(20, 10)
fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
for i in range(len(modes)):
ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
ax=ax[i], title=modes[i], color=my_colors[i])
ax[i].legend()
fig.suptitle(name)
import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt
fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10),
'B': np.random.randint(100,1000,10),
'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
df.plot(ax =ax)
I am using Seaborn to make boxplots from pandas dataframes. Seaborn boxplots seem to essentially read the dataframes the same way as the pandas boxplot functionality (so I hope the solution is the same for both -- but I can just use the dataframe.boxplot function as well). My dataframe has 12 columns and the following code generates a single plot with one boxplot for each column (just like the dataframe.boxplot() function would).
fig, ax = plt.subplots()
sns.set_style("darkgrid", {"axes.facecolor":"darkgrey"})
pal = sns.color_palette("husl",12)
sns.boxplot(dataframe, color = pal)
Can anyone suggest a simple way of overlaying all the values (by columns) while making a boxplot from dataframes?
I will appreciate any help with this.
This hasn't been added to the seaborn.boxplot function yet, but there's something similar in the seaborn.violinplot function, which has other advantages:
x = np.random.randn(30, 6)
sns.violinplot(x, inner="points")
sns.despine(trim=True)
A general solution for the boxplot for the entire dataframe, which should work for both seaborn and pandas as their are all matplotlib based under the hood, I will use pandas plot as the example, assuming import matplotlib.pyplot as plt already in place. As you have already have the ax, it would make better sense to just use ax.text(...) instead of plt.text(...).
In [35]:
print df
V1 V2 V3 V4 V5
0 0.895739 0.850580 0.307908 0.917853 0.047017
1 0.931968 0.284934 0.335696 0.153758 0.898149
2 0.405657 0.472525 0.958116 0.859716 0.067340
3 0.843003 0.224331 0.301219 0.000170 0.229840
4 0.634489 0.905062 0.857495 0.246697 0.983037
5 0.573692 0.951600 0.023633 0.292816 0.243963
[6 rows x 5 columns]
In [34]:
df.boxplot()
for x, y, s in zip(np.repeat(np.arange(df.shape[1])+1, df.shape[0]),
df.values.ravel(), df.values.astype('|S5').ravel()):
plt.text(x,y,s,ha='center',va='center')
For a single series in the dataframe, a few small changes is necessary:
In [35]:
sub_df=df.V1
pd.DataFrame(sub_df).boxplot()
for x, y, s in zip(np.repeat(1, df.shape[0]),
sub_df.ravel(), sub_df.values.astype('|S5').ravel()):
plt.text(x,y,s,ha='center',va='center')
Making scatter plots is also similar:
#for the whole thing
df.boxplot()
plt.scatter(np.repeat(np.arange(df.shape[1])+1, df.shape[0]), df.values.ravel(), marker='+', alpha=0.5)
#for just one column
sub_df=df.V1
pd.DataFrame(sub_df).boxplot()
plt.scatter(np.repeat(1, df.shape[0]), sub_df.ravel(), marker='+', alpha=0.5)
To overlay stuff on boxplot, we need to first guess where each boxes are plotted at among xaxis. They appears to be at 1,2,3,4,..... Therefore, for the values in the first column, we want them to be plot at x=1; the 2nd column at x=2 and so on.
Any efficient way of doing it is to use np.repeat, repeat 1,2,3,4..., each for n times, where n is the number of observations. Then we can make a plot, using those numbers as x coordinates. Since it is one-dimensional, for the y coordinates, we will need a flatten view of the data, provided by df.ravel()
For overlaying the text strings, we need a anther step (a loop). As we can only plot one x value, one y value and one text string at a time.
I have the following trick:
data = np.random.randn(6,5)
df = pd.DataFrame(data,columns = list('ABCDE'))
Now assign a dummy column to df:
df['Group'] = 'A'
print df
A B C D E Group
0 0.590600 0.226287 1.552091 -1.722084 0.459262 A
1 0.369391 -0.037151 0.136172 -0.772484 1.143328 A
2 1.147314 -0.883715 -0.444182 -1.294227 1.503786 A
3 -0.721351 0.358747 0.323395 0.165267 -1.412939 A
4 -1.757362 -0.271141 0.881554 1.229962 2.526487 A
5 -0.006882 1.503691 0.587047 0.142334 0.516781 A
Use the df.groupby.boxplot(), you get it done.
df.groupby('Group').boxplot()