Map of generic interfaces in Kotlin - kotlin

I stuck with some simple thing) Let's say I have following:
interface IMessagePayload // marker interface
data class IdPayload(
val id: Long
) : IMessagePayload
data class StringPayload(
val id: String,
) : IMessagePayload
Then I have a class:
data class Message<T : IMessagePayload>(
val id: String,
val payload: T,
)
Also I have some interface describing processor of this message:
interface IMessageProcessor<T : IMessagePayload> {
fun process(message: Message<T>)
}
And some implementation:
class ProcessorImpl : IMessageProcessor<IdPayload> {
override fun process(message: Message<IdPayload>) {
}
}
Now I wanna have a map of such processors. Lets use some enum type as a keys of this map:
enum class ActionType {
UPDATE,
DELETE,
ADD
}
private var map = mutableMapOf<ActionType, IMessageProcessor<IMessagePayload>>()
map[ActionType.ADD] = ProcessorImpl() // <-- error here
And that's where the problem occurs. I cannot put my ProcessorImpl into this map. The compiler says that there is an error: Type mismatch. Required: IMessageProcessor. Found: ProcessorImpl().
I could declare the map in the following way (using star projection):
private var map = mutableMapOf<ActionType, IMessageProcessor<*>>()
But in this case I cannot call processors's process method fetching it from the map by key first:
map[ActionType.ADD]?.process(Message("message-id", IdPayload(1))) // <-- error here
Compiler complains: Type mismatch. Required nothing. Found Message<IdPayload>
What am I doing wrong? Any help is appreciated.

This is about variance.
IMessageProcessor is defined as interface IMessageProcessor<T : IMessagePayload>; it has one type parameter, which must be IMessagePayload or a subtype.
But it is invariant in that type parameter; an IMessageProcessor< IdPayload> is not related to an IMessageProcessor<IMessagePayload>.  In particular, it's not a subtype.
And your map is defined with a value type IMessageProcessor<IMessagePayload>.  So its value cannot be an IMessageProcessor< IdPayload>, because that's neither the value type, nor a subtype.  Hence the compile error.
In this case, the simplest way to get it to compile is to change your map:
private var map = mutableMapOf<ActionType, IMessageProcessor<out IMessagePayload>>()
The only difference there is the out; that tells the compiler that the value IMessageProcessor is covariant in its type parameter.  (It may help to think of out as meaning ‘…or any subtype’.  Similarly, you could make it contravariant by using in, which you might think of as ‘…or any supertype’.)
This lets you store in the map an IMessageProcessor for any subtype of IMessagePayload.
However, if you do that, you'll find that you can't use any value you pull out of your map — because it can't tell which messages the processor can handle, i.e. which subtype of IMessagePayload it works for!  (The compiler expresses this as expecting a type parameter of Nothing.)
In general, it's often better to specify variance on the interface or superclass itself (declaration-site variance) rather than the use-site variance shown above.  But I can't see a good way to do that here, because you have multiple generic classes, and they interact in a complicated way…)
Think for a moment what IMessageProcessor's type parameter means: it's the type of message that the processor can consume. So an IMessageProcessor<A> can handle messages of type Message<A>.
Now, a subtype must be able to do everything its supertype can do (and usually more) — otherwise you can't drop that subtype anywhere that's expecting to use the supertype.  (That has the grand name of the Liskov substitution principle — but it's really just common sense.)
So an IMessageProcessor<B> is a subtype of IMessageProcessor<A> only if it can handle at least all the messages that an IMessageProcessor<A> can.  This means it must accept all messages of type Message<A>.
But Message is invariant in its type parameter: a Message<B> is not directly related to a Message<A>.  So you can't write a processor that handles them both.
The most natural solution I can find is to specify variance on both Message and IMessageProcessor:
data class Message<out T : IMessagePayload>( /*…*/ )
interface IMessageProcessor<in T : IMessagePayload> { /*…*/ }
And then use a wildcard in your map to make it explicit that you don't know anything about the type parameters of its values:
private var map = mutableMapOf<ActionType, IMessageProcessor<*>>()
That lets you safely store a ProcessorImpl() in the map.
But you still have to use an (unchecked) cast on the values you pull out of the map before you can use them:
(map[ActionType.ADD] as IMessageProcessor<IdPayload>)
.process(Message("4", IdPayload(4L)))
I don't think there's any easy way around that, because the problem is inherent in having values which are processors that can handle only some (unknown) types of message.
I'm afraid the best thing would be to have a rethink about what these classes mean and how they should interact, and redesign accordingly.

Related

Kotlin. How to get specific subclass of sealed class?

I'm using kotlin sealed class. And I need to retrieve specific subclass. My sealed class:
sealed class Course(
val type: Type
) {
data class ProgrammingCourse(val name: String, val detail: String) : Course(Type.PROGRAMMING)
object LanguageCourse: Course(Type.LANGUAGE)
.....
}
For example I have function which can return Course:
fun getCourse(): Course {
if(...)
return Course.ProgrammingCourse("test", "test")
else
return Course.LanguageCourse
}
In addition, I have a method that can only work with a specific subclass of the Course class. Fox example:
fun workWithCourse(course: Course.ProgrammingCourse) {
// here some logic
}
And now I'm trying to get the course using the method getCourse(), and then pass it to the method workWithCourse()
fun main() {
val course = getCourse()
workWithCourse(course)
}
Error:
Type mismatch.
Required:
Course.ProgrammingCourse
Found:
Course
But I know the course type - Type, parameter that each course has. Can I, knowing this Type, cast the course (which I retrieve from getCourse() method) to a specific subclass ? Is there such a way ?
Please help me
P.S.
I don't need type checks like:
if(course is Course.ProgrammingCourse) {
workWithCourse(course)
}
I need the subclass to be automatically inferred by the Type parameter, if possible.
P.S.2
The need for such a solution is that I have a class that takes a Course, it doesn't know anything about a particular course, at the same time the class takes the Type that I want to use for identification. This class also receives an interface (by DI) for working with courses, a specific implementation of the interface is provided by the dagger(multibinding) by key, where I have the Type as the key. In the same way I want to pass by the same parameter Type specific subclass of my Course to my interface which working with specific courses.
No, there is no way for automatic inference to the best of my knowledge.
You returned a Course, and that's what you have. Being sealed here does not matter at all. Generally what you do here is use the when expression if you want to statically do different things depending on the type, but if it's just one type (ProgrammingCourse) that can be passed to workWithCourse, then an if is probably right, with dispatch using as.
That said, this looks like counter-productive design. If you can only work with one course, why do they even share a top level interface? The way the code is written implies working is a function that can take any course, or should be a method member. Anything else is very confusing. Perhaps workWithCourse should take a Course and use the when expression to dispatch it appropriately?
In kotlin you can specify the class explicitly with as.
val course = getCourse()
if (type == Type.PROGRAMMING) {
workWithCourse(course as Course.ProgrammingCourse)
}
*thanks Joffrey for his comment
What you seem to be asking for is a compile-time guarantee for something that will only be known at runtime. You didn't share the condition used in getCourse(), but in general it could return both types.
Therefore, you need to decide what will happen in both cases - that's not something the compiler can decide for you via any "inference".
If you want the program to throw an exception when getCourse() returns something else than a Course.ProgrammingCourse, you can cast the returned value using as:
val course = getCourse() as Course.ProgrammingCourse
workWithCourse(course)
If you don't want to crash, but you only want to call workWithCourse in some cases, then you need an if or when statement to express that choice. For instance, to call it only when the value is of type Course.ProgrammingCourse, then you would write the code you already know:
if (course is Course.ProgrammingCourse) {
workWithCourse(course)
}
Or with a when statement:
val course = getCourse()
when (course) {
is Course.ProgrammingCourse -> workWithCourse(course)
is Course.LanguageCourse -> TODO("do something with the other value")
}
The when is better IMO because it forces you (or other devs in the team) to take a look at this when whenever you (or they) add a new subclass of the sealed class. It's easy to forget with an if.
You can also decide to not test the actual type, and focus on the type property like in #grigory-panov's answer, but that is brittle because it relies on an implicit relationship between the type property and the actual type of the value:
val course = getCourse()
if (type == Type.PROGRAMMING) {
workWithCourse(course as Course.ProgrammingCourse)
}
The main point of using sealed classes is so you can use their actual type instead of a manually managed type property + casts. So I'd say use only is X and don't set a type property at all. Using a sealed class allows Kotlin to type-check a bunch of things, it's more powerful than using such a property.

Is it possible to implement both List<SuperClass> and List<SubClass>?

Let's take the following code as an example:
val immutableList: List<Any> = listOf<String>()
val mutableList: MutableList<Any> = mutableListOf<String>()
interface SuperList : List<Any>
interface SubList : SuperList, List<String>
As expected, assigning immutableList is allowed, which from my understanding of the docs is because it's marked to say it will only ever return values of T and never take them, so it doesn't matter if it's Any or a subclass.
Also as expected, assigning mutableList gives an error because it cannot offer that guarantee, as casting to MutableList<Any> would let you add an Any to a list of Strings and that would be bad.
I would expect the interface SubList to be fine for the same reason that immutableList is: List's generic functions will only give T, never take it, so returning a String would make both happy. However, its declaration throws the same error as mutableList:
Type parameter E of 'List' has inconsistent values: String, Any
Type parameter E of 'Collection' has inconsistent values: String, Any
Type parameter T of 'Iterable' has inconsistent values: String, Any
Why is this?
Things I've attempted, when trying to understand the cause:
Having SubList inherit from List<Any> directly rather than SuperList: Gives the same error, so this isn't due to something funky with the layers in the inheritance.
Having SuperList inherit from List<out Any> rather than List<Any>: Gives the error Projections are not allowed for immediate arguments of a supertype.
Having SuperList take a type parameter. This works but like... at that point why does SuperList even exist, lol. Much better for my use case to just take an entirely different approach to the goal than to do that.
Context:
My goal was a pair of Table and MutableTable types, and my initial idea was implementing this via extending List<List> and List<MutableList>, respectively. But I wanted to boil the question down to its simplest form, and so chose non-generic classes to use for the sample code.
I have other ideas on how to implement the types, so I'm not looking for an answer to that. I'd just like to understand the root issue that stops this particular approach from working, so that in the future I don't run into other pitfalls with it in ways that might be harder to dodge.

How can I encode a typed class with Kotlinx Serialization?

I'd like to encode a given class of type T: EventData with Kotlinx Serialization encodeToString.
This is my code:
class EventDispatcher<T: EventData>(
val pubSubTemplate: PubSubTemplate
) {
/**
* Dispatch an event to the game engine event manager pipeline
*/
fun dispatchEvent(event: T, initiator: String) {
val eventData: String = Json.encodeToString(event)
}
The compiler tells me:
Cannot use `T` as reified type parameter. Use a class instead
Is there a way to make this still work?
For Json.encodeToString(event) to work, it needs the type information for T. But, this type information is lost at runtime due to the way how generics work in Kotlin/Java.
One way to retain the type information would be by making dispatchEvent an inline function with T as a reified type parameter.
However, this also raises the question how you want to serialize event. You could also use polymorphic serialization of EventData, rather than trying to serialize T. This will include an additional class discriminator in your serialized output (it necessarily has to for polymorphic serialization/deserialization to work).
If you serialize the concrete type T, this class discriminator wouldn't be included, which is questionable; how would whoever will deserialize this know what type it is?
In short, I think you need polymorphic serialization.

Type parameter cannot have any other bounds if it's bounded by another type parameter: what does this mean and how to resolve it?

I was implementing custom list class MyList<T> in kotlin. In that, I wanted to add insertSorted function, which inserts a new element into the list in sorted order. For that, T must implement comparator. So the prototype of that function will be fun <C> insertSorted(ele: C) where C:T, C:Comparable<T> But this is giving me Type parameter cannot have any other bounds if it's bounded by another type parameter error. I am not understanding what this error is. Also, this question did not help me much.
PS: The type I am passing to that function is declared as class MyClass : Comparator<MyClass>. So the bound where C:T, C:Comparator<T> is valid I guess.
For the meaning of the error, see this question:
Why can't type parameter in Kotlin have any other bounds if it's bounded by another type parameter?
But if your custom list contains elements of type T and you want to compare them, then T should implement Comparable<T>.
So this should be all you need:
class MyList<T: Comparable<T>> {
fun insertSorted(ele: T) {
}
}

What are sealed classes in Kotlin?

I'm a beginner in Kotlin and recently read about Sealed Classes. But from the doc the only think I actually get is that they are exist.
The doc stated, that they are "representing restricted class hierarchies". Besides that I found a statement that they are enums with superpower. Both aspects are actually not clear.
So can you help me with the following questions:
What are sealed classes and what is the idiomatic way of using ones?
Does such a concept present in other languages like Python, Groovy or C#?
UPDATE:
I carefully checked this blog post and still can't wrap my head around that concept. As stated in the post
Benefit
The feature allows us to define class hierarchies that are
restricted in their types, i.e. subclasses. Since all subclasses need
to be defined inside the file of the sealed class, there’s no chance
of unknown subclasses which the compiler doesn’t know about.
Why the compiler doesn't know about other subclasses defined in other files? Even IDE knows that. Just press Ctrl+Alt+B in IDEA on, for instance, List<> definition and all implementations will be shown even in other source files. If a subclass can be defined in some third-party framework, which not used in the application, why should we care about that?
Say you have a domain (your pets) where you know there is a definite enumeration (count) of types. For example, you have two and only two pets (which you will model with a class called MyPet). Meowsi is your cat and Fido is your dog.
Compare the following two implementations of that contrived example:
sealed class MyPet
class Meowsi : MyPet()
class Fido : MyPet()
Because you have used sealed classes, when you need to perform an action depending on the type of pet, then the possibilities of MyPet are exhausted in two and you can ascertain that the MyPet instance will be exactly one of the two options:
fun feed(myPet: MyPet): String {
return when(myPet) {
is Meowsi -> "Giving cat food to Meowsi!"
is Fido -> "Giving dog biscuit to Fido!"
}
}
If you don't use sealed classes, the possibilities are not exhausted in two and you need to include an else statement:
open class MyPet
class Meowsi : MyPet()
class Fido : MyPet()
fun feed(myPet: MyPet): String {
return when(myPet) {
is Mewosi -> "Giving cat food to Meowsi!"
is Fido -> "Giving dog biscuit to Fido!"
else -> "Giving food to someone else!" //else statement required or compiler error here
}
}
In other words, without sealed classes there is not exhaustion (complete coverage) of possibility.
Note that you could achieve exhaustion of possiblity with Java enum however these are not fully-fledged classes. For example, enum cannot be subclasses of another class, only implement an interface (thanks EpicPandaForce).
What is the use case for complete exhaustion of possibilities? To give an analogy, imagine you are on a tight budget and your feed is very precious and you want to ensure you don't end up feeding extra pets that are not part of your household.
Without the sealed class, someone else in your home/application could define a new MyPet:
class TweetiePie : MyPet() //a bird
And this unwanted pet would be fed by your feed method as it is included in the else statement:
else -> "Giving food to someone else!" //feeds any other subclass of MyPet including TweetiePie!
Likewise, in your program exhaustion of possibility is desirable because it reduces the number of states your application can be in and reduces the possibility of bugs occurring where you have a possible state where behaviour is poorly defined.
Hence the need for sealed classes.
Mandatory else
Note that you only get the mandatory else statement if when is used as an expression. As per the docs:
If [when] is used as an expression, the value of the satisfied branch becomes the value of the overall expression [... and] the else branch is mandatory, unless the compiler can prove that all possible cases are covered with branch conditions
This means you won't get the benefit of sealed classes for something like this):
fun feed(myPet: MyPet): Unit {
when(myPet) {
is Meowsi -> println("Giving cat food to Meowsi!") // not an expression so we can forget about Fido
}
}
To get exhaustion for this scenario, you would need to turn the statement into an expression with return type.
Some have suggested an extension function like this would help:
val <T> T.exhaustive: T
get() = this
Then you can do:
fun feed(myPet: MyPet): Unit {
when(myPet) {
is Meowsi -> println("Giving cat food to Meowsi!")
}.exhaustive // compiler error because we forgot about Fido
}
Others have suggested that an extension function pollutes the namespace and other workarounds (like compiler plugins) are required.
See here for more about this problem.
Sealed classes are easier to understand when you understand the kinds of problems they aim to solve. First I'll explain the problems, then I'll introduce the class hierarchies and the restricted class hierarchies step by step.
We'll take a simple example of an online delivery service where we use three possible states Preparing, Dispatched and Delivered to display the current status of an online order.
Problems
Tagged class
Here we use a single class for all the states. Enums are used as type markers. They are used for tagging the states Preparing, Dispatched and Delivered :
class DeliveryStatus(
val type: Type,
val trackingId: String? = null,
val receiversName: String? = null) {
enum class Type { PREPARING, DISPATCHED, DELIVERED }
}
The following function checks the state of the currently passed object with the help of enums and displays the respective status:
fun displayStatus(state: DeliveryStatus) = when (state.type) {
PREPARING -> print("Preparing for dispatch")
DISPATCHED -> print("Dispatched. Tracking ID: ${state.trackingId ?: "unavailable"}")
DELIVERED -> print("Delivered. Receiver's name: ${state.receiversName ?: "unavailable"}")
}
As you can see, we are able to display the different states properly. We also get to use exhaustive when expression, thanks to enums. But there are various problems with this pattern:
Multiple responsibilities
The class DeliveryStatus has multiple responsibilities of representing different states. So it can grow bigger, if we add more functions and properties for different states.
More properties than needed
An object has more properties than it actually needs in a particular state. For example, in the function above, we don't need any property for representing the Preparing state. The trackingId property is used only for the Dispatched state and the receiversName property is concerned only with the Delivered state. The same is true for functions. I haven't shown functions associated with states to keep the example small.
No guarantee of consistency
Since these unused properties can be set from unrelated states, it's hard to guarantee the consistency of a particular state. For example, one can set the receiversName property on the Preparing state. In that case, the Preparing will be an illegal state, because we can't have a receiver's name for the shipment that hasn't been delivered yet.
Need to handle null values
Since not all properties are used for all states, we have to keep the properties nullable. This means we also need to check for the nullability. In the displayStatus() function we check the nullability using the ?:(elvis) operator and show unavailable, if that property is null. This complicates our code and reduces readability. Also, due to the possibility of a nullable value, the guarantee for consistency is reduced further, because the null value of receiversName in Delivered is an illegal state.
Introducing Class Hierarchies
Unrestricted class hierarchy: abstract class
Instead of managing all the states in a single class, we separate the states in different classes. We create a class hierarchy from an abstract class so that we can use polymorphism in our displayStatus() function:
abstract class DeliveryStatus
object Preparing : DeliveryStatus()
class Dispatched(val trackingId: String) : DeliveryStatus()
class Delivered(val receiversName: String) : DeliveryStatus()
The trackingId is now only associated with the Dispatched state and receiversName is only associated with the Delivered state. This solves the problems of multiple responsibilities, unused properties, lack of state consistency and null values.
Our displayStatus() function now looks like the following:
fun displayStatus(state: DeliveryStatus) = when (state) {
is Preparing -> print("Preparing for dispatch")
is Dispatched -> print("Dispatched. Tracking ID: ${state.trackingId}")
is Delivered -> print("Delivered. Received by ${state.receiversName}")
else -> throw IllegalStateException("Unexpected state passed to the function.")
}
Since we got rid of null values, we can be sure that our properties will always have some values. So now we don't need to check for null values using the ?:(elvis) operator. This improves code readability.
So we solved all the problems mentioned in the tagged class section by introducing a class hierarchy. But the unrestricted class hierarchies have the following shortcomings:
Unrestricted Polymorphism
By unrestricted polymorphism I mean that our function displayStatus() can be passed a value of unlimited number of subclasses of the DeliveryStatus. This means we have to take care of the unexpected states in displayStatus(). For this, we throw an exception.
Need for the else branch
Due to unrestricted polymorphism, we need an else branch to decide what to do when an unexpected state is passed. If we use some default state instead of throwing an exception and then forget to take care of any newly added subclass, then that default state will be displayed instead of the state of the newly created subclass.
No exhaustive when expression
Since the subclasses of an abstract class can exist in different packages and compilation units, the compiler doesn't know all the possible subclasses of the abstract class. So it won't flag an error at compile time, if we forget to take care of any newly created subclasses in the when expression. In that case, only throwing an exception can help us. Unfortunately, we'll know about the newly created state only after the program crashes at runtime.
Sealed Classes to the Rescue
Restricted class hierarchy: sealed class
Using the sealed modifier on a class does two things:
It makes that class an abstract class. Since Kotlin 1.5, you can use a sealed interface too.
It makes it impossible to extend that class outside of that file. Since Kotlin 1.5 the same file restriction has been removed. Now the class can be extended in other files too but they need to be in the same compilation unit and in the same package as the sealed type.
sealed class DeliveryStatus
object Preparing : DeliveryStatus()
class Dispatched(val trackingId: String) : DeliveryStatus()
class Delivered(val receiversName: String) : DeliveryStatus()
Our displayStatus() function now looks cleaner:
fun displayStatus(state: DeliveryStatus) = when (state) {
is Preparing -> print("Preparing for Dispatch")
is Dispatched -> print("Dispatched. Tracking ID: ${state.trackingId}")
is Delivered -> print("Delivered. Received by ${state.receiversName}")
}
Sealed classes offer the following advantages:
Restricted Polymorphism
By passing an object of a sealed class to a function, you are also sealing that function, in a sense. For example, now our displayStatus() function is sealed to the limited forms of the state object, that is, it will either take Preparing, Dispatched or Delivered. Earlier it was able to take any subclass of DeliveryStatus. The sealed modifier has put a limit on polymorphism. As a result, we don't need to throw an exception from the displayStatus() function.
No need for the else branch
Due to restricted polymorphism, we don't need to worry about other possible subclasses of DeliveryStatus and throw an exception when our function receives an unexpected type. As a result, we don't need an else branch in the when expression.
Exhaustive when expression
Just like all the possible values of an enum class are contained inside the same class, all the possible subtypes of a sealed class are contained inside the same package and the same compilation unit. So, the compiler knows all the possible subclasses of this sealed class. This helps the compiler to make sure that we have covered(exhausted) all the possible subtypes in the when expression. And when we add a new subclass and forget to cover it in the when expression, it flags an error at compile time.
Note that in the latest Kotlin versions, your when is exhaustive for the when expressions as well the when statements.
Why in the same file?
The same file restriction has been removed since Kotlin 1.5. Now you can define the subclasses of the sealed class in different files but the files need to be in the same package and the same compilation unit. Before 1.5, the reason that all the subclasses of a sealed class needed to be in the same file was that it had to be compiled together with all of its subclasses for it to have a closed set of types. If the subclasses were allowed in other files, the build tools like Gradle would have to keep track of the relations of files and this would affect the performance of incremental compilation.
IDE feature: Add remaining branches
When you just type when (status) { } and press Alt + Enter, Enter, the IDE automatically generates all the possible branches for you like the following:
when (state) {
is Preparing -> TODO()
is Dispatched -> TODO()
is Delivered -> TODO()
}
In our small example there are just three branches but in a real project you could have hundreds of branches. So you save the effort of manually looking up which subclasses you have defined in different files and writing them in the when expression one by one in another file. Just use this IDE feature. Only the sealed modifier enables this.
That's it! Hope this helps you understand the essence of sealed classes.
If you've ever used an enum with an abstract method just so that you could do something like this:
public enum ResultTypes implements ResultServiceHolder {
RESULT_TYPE_ONE {
#Override
public ResultOneService getService() {
return serviceInitializer.getResultOneService();
}
},
RESULT_TYPE_TWO {
#Override
public ResultTwoService getService() {
return serviceInitializer.getResultTwoService();
}
},
RESULT_TYPE_THREE {
#Override
public ResultThreeService getService() {
return serviceInitializer.getResultThreeService();
}
};
When in reality what you wanted is this:
val service = when(resultType) {
RESULT_TYPE_ONE -> resultOneService,
RESULT_TYPE_TWO -> resultTwoService,
RESULT_TYPE_THREE -> resultThreeService
}
And you only made it an enum abstract method to receive compile time guarantee that you always handle this assignment in case a new enum type is added; then you'll love sealed classes because sealed classes used in assignments like that when statement receive a "when should be exhaustive" compilation error which forces you to handle all cases instead of accidentally only some of them.
So now you cannot end up with something like:
switch(...) {
case ...:
...
default:
throw new IllegalArgumentException("Unknown type: " + enum.name());
}
Also, enums cannot extend classes, only interfaces; while sealed classes can inherit fields from a base class. You can also create multiple instances of them (and you can technically use object if you need the subclass of the sealed class to be a singleton).