Fitting with keras Model API - tensorflow

I am trying to create something similar to Word2Vec with the following:
class Word2Vec(keras.Model):
def __init__(self, vocab_size, embedding_dim):
super().__init__()
self.embedding = keras.layers.Embedding(
vocab_size,
embedding_dim,
input_length=1,
name="w2v_embedding"
)
self.dot = keras.layers.Dot(axes=(-1, -1))
def call(self, data):
target, context = data
we = self.embedding(target)
ce = self.embedding(context)
return self.dot([we, ce])
and suppose the loss is the following:
def loss(similarity):
log_prob = tf.math.log(tf.sigmoid(similarity))
return -tf.math.reduce_mean(log_prob)
I am trying to fit to the above model with words and its contexts but running into the error: OperatorNotAllowedInGraphError: iterating over tf.Tensor is not allowed: AutoGraph did convert this function. This might indicate you are trying to use an unsupported feature..
Supposing I have a dummy dataset that looks like the following:
N = 10000
V = 100
word = np.random.randint(0, V, N)
context = np.random.randint(0, V, (N, 4))
What I tried to do was:
word2vec = Word2Vec(V, 32)
word2vec.compile(loss=loss, optimizer="adam")
word2vec.fit(tf.data.Dataset.from_tensor_slices((word, context)), batch_size=128, epochs=1)
when I got the above error. Any thoughts on how to fix this?
I understand that this is not the exact word2vec model, but I'm more concerned about understanding the tensorflow/ keras API and getting this to work, than the actual paper implementation.
Edit 1
An editable kaggle notebook with full code is available here: https://www.kaggle.com/sachin/word-vectors

I think this is causing the issue:
target, context = data
Try this instead:
target = data[0]
context = data[1]

Related

Problem with inputs when building a model with TFBertModel and AutoTokenizer from HuggingFace's transformers

I'm trying to build the model illustrated in this picture:
I obtained a pre-trained BERT and respective tokenizer from HuggingFace's transformers in the following way:
from transformers import AutoTokenizer, TFBertModel
model_name = "dbmdz/bert-base-italian-xxl-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
bert = TFBertModel.from_pretrained(model_name)
The model will be fed a sequence of italian tweets and will need to determine if they are ironic or not.
I'm having problems building the initial part of the model, which takes the inputs and feeds them to the tokenizer in order to get a representation I can feed to BERT.
I can do it outside of the model-building context:
my_phrase = "Ciao, come va?"
# an equivalent version is tokenizer(my_phrase, other parameters)
bert_input = tokenizer.encode(my_phrase, add_special_tokens=True, return_tensors='tf', max_length=110, padding='max_length', truncation=True)
attention_mask = bert_input > 0
outputs = bert(bert_input, attention_mask)['pooler_output']
but I'm having troubles building a model that does this. Here is the code for building such a model (the problem is in the first 4 lines ):
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
encoder_inputs = tokenizer(text_input, return_tensors='tf', add_special_tokens=True, max_length=110, padding='max_length', truncation=True)
outputs = bert(encoder_inputs)
net = outputs['pooler_output']
X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True, dropout=0.1, recurrent_dropout=0.1))(net)
X = tf.keras.layers.Concatenate(axis=-1)([X, input_layer])
X = tf.keras.layers.MaxPooling1D(20)(X)
X = tf.keras.layers.SpatialDropout1D(0.4)(X)
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(128, activation="relu")(X)
X = tf.keras.layers.Dropout(0.25)(X)
X = tf.keras.layers.Dense(2, activation='softmax')(X)
model = tf.keras.Model(inputs=text_input, outputs = X)
return model
And when I call the function for creating this model I get this error:
text input must of type str (single example), List[str] (batch or single pretokenized example) or List[List[str]] (batch of pretokenized examples).
One thing I thought was that maybe I had to use the tokenizer.batch_encode_plus function which works with lists of strings:
class BertPreprocessingLayer(tf.keras.layers.Layer):
def __init__(self, tokenizer, maxlength):
super().__init__()
self._tokenizer = tokenizer
self._maxlength = maxlength
def call(self, inputs):
print(type(inputs))
print(inputs)
tokenized = tokenizer.batch_encode_plus(inputs, add_special_tokens=True, return_tensors='tf', max_length=self._maxlength, padding='max_length', truncation=True)
return tokenized
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
encoder_inputs = BertPreprocessingLayer(tokenizer, 100)(text_input)
outputs = bert(encoder_inputs)
net = outputs['pooler_output']
# ... same as above
but I get this error:
batch_text_or_text_pairs has to be a list (got <class 'keras.engine.keras_tensor.KerasTensor'>)
and beside the fact I haven't found a way to convert that tensor to a list with a quick google search, it seems weird that I have to go in and out of tensorflow in this way.
I've also looked up on the huggingface's documentation but there is only a single usage example, with a single phrase, and what they do is analogous at my "out of model-building context" example.
EDIT:
I also tried with Lambdas in this way:
tf.executing_eagerly()
def tokenize_tensor(tensor):
t = tensor.numpy()
t = np.array([str(s, 'utf-8') for s in t])
return tokenizer(t.tolist(), return_tensors='tf', add_special_tokens=True, max_length=110, padding='max_length', truncation=True)
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='text')
encoder_inputs = tf.keras.layers.Lambda(tokenize_tensor, name='tokenize')(text_input)
...
outputs = bert(encoder_inputs)
but I get the following error:
'Tensor' object has no attribute 'numpy'
EDIT 2:
I also tried the approach suggested by #mdaoust of wrapping everything in a tf.py_function and got this error.
def py_func_tokenize_tensor(tensor):
return tf.py_function(tokenize_tensor, [tensor], Tout=[tf.int32, tf.int32, tf.int32])
eager_py_func() missing 1 required positional argument: 'Tout'
Then I defined Tout as the type of the value returned by the tokenizer:
transformers.tokenization_utils_base.BatchEncoding
and got the following error:
Expected DataType for argument 'Tout' not <class
'transformers.tokenization_utils_base.BatchEncoding'>
Finally I unpacked the value in the BatchEncoding in the following way:
def tokenize_tensor(tensor):
t = tensor.numpy()
t = np.array([str(s, 'utf-8') for s in t])
dictionary = tokenizer(t.tolist(), return_tensors='tf', add_special_tokens=True, max_length=110, padding='max_length', truncation=True)
#unpacking
input_ids = dictionary['input_ids']
tok_type = dictionary['token_type_ids']
attention_mask = dictionary['attention_mask']
return input_ids, tok_type, attention_mask
And get an error in the line below:
...
outputs = bert(encoder_inputs)
ValueError: Cannot take the length of shape with unknown rank.
For now I solved by taking the tokenization step out of the model:
def tokenize(sentences, tokenizer):
input_ids, input_masks, input_segments = [],[],[]
for sentence in sentences:
inputs = tokenizer.encode_plus(sentence, add_special_tokens=True, max_length=128, pad_to_max_length=True, return_attention_mask=True, return_token_type_ids=True)
input_ids.append(inputs['input_ids'])
input_masks.append(inputs['attention_mask'])
input_segments.append(inputs['token_type_ids'])
return np.asarray(input_ids, dtype='int32'), np.asarray(input_masks, dtype='int32'), np.asarray(input_segments, dtype='int32')
The model takes two inputs which are the first two values returned by the tokenize funciton.
def build_classifier_model():
input_ids_in = tf.keras.layers.Input(shape=(128,), name='input_token', dtype='int32')
input_masks_in = tf.keras.layers.Input(shape=(128,), name='masked_token', dtype='int32')
embedding_layer = bert(input_ids_in, attention_mask=input_masks_in)[0]
...
model = tf.keras.Model(inputs=[input_ids_in, input_masks_in], outputs = X)
for layer in model.layers[:3]:
layer.trainable = False
return model
I'd still like to know if someone has a solution which integrates the tokenization step inside the model-building context so that an user of the model can simply feed phrases to it to get a prediction or to train the model.
text input must of type str (single example), List[str] (batch or single pretokenized example) or List[List[str]] (batch of pretokenized examples).
Solution to the above error:
Just use text_input = 'text'
instead of
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
It looks like this is not TensorFlow compatible.
https://huggingface.co/dbmdz/bert-base-italian-xxl-cased#model-weights
Currently only PyTorch-Transformers compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue!
But remember that some things are easier if you don't use keras's functional-model-api. That's what got <class 'keras.engine.keras_tensor.KerasTensor'> is complaining about.
Try passing a tf.Tensor to see if that works.
What happens when you try:
text_input = tf.constant('text')
Try writing your model as a subclass of model.
Yeah, my first answer was wrong.
The problem is that tensorflow has two types of tensors. Eager tensors (these have a value). And "symbolic tensors" or "graph tensors" that don't have a value, and are just used to build up a calculation.
Your tokenize_tensor function expects an eager tensor. Only eager tensors have a .numpy() method.
def tokenize_tensor(tensor):
t = tensor.numpy()
t = np.array([str(s, 'utf-8') for s in t])
return tokenizer(t.tolist(), return_tensors='tf', add_special_tokens=True, max_length=110, padding='max_length', truncation=True)
But keras Input is a symbolic tensor.
text_input = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name='text')
encoder_inputs = tf.keras.layers.Lambda(tokenize_tensor, name='tokenize')(text_input)
To fix this, you can use tf.py_function. It works in graph mode, and will call the wrapped function with eager tensors when the graph is executed, instead of passing it the graph-tensors while the graph is being constructed.
def py_func_tokenize_tensor(tensor):
return tf.py_function(tokenize_tensor, [tensor])
...
encoder_inputs = tf.keras.layers.Lambda(py_func_tokenize_tensor, name='tokenize')(text_input)
Found this Use `sentence-transformers` inside of a keras model and this amazing articles https://www.philschmid.de/tensorflow-sentence-transformers, which explain you how to do what you're trying to achieve.
The first one is using the py_function approach, the second uses tf.Model to wrap everything into model classes.
Hope this helps anyone arriving here in the future.
This is how to use tf.py_function correctly to create a model that takes string as an input:
model_name = "dbmdz/bert-base-italian-xxl-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
bert = TFBertModel.from_pretrained(model_name)
def build_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
def encode_text(text):
inputs = [tf.compat.as_str(x) for x in text.numpy().tolist()]
tokenized = tokenizer(
inputs,
return_tensors='tf',
add_special_tokens=True,
max_length=110,
padding='max_length',
truncation=True)
return tokenized['input_ids'], tokenized['attention_mask']
input_ids, attention_mask = tf.py_function(encode_text, inp=[text_input], Tout=[tf.int32, tf.int32])
input_ids = tf.ensure_shape(input_ids, [None, 110])
attention_mask = tf.ensure_shape(attention_mask, [None, 110])
outputs = bert(input_ids, attention_mask)
net = outputs['last_hidden_state']
# Some other layers, this part is not important
x = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True))(net)
x = tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(1, name='classifier'))(x)
return tf.keras.Model(inputs=text_input, outputs=x)
I use last_hidden_state instead of pooler_output, that's where outputs for each token in the sequence are located. (See discussion here on difference between last_hidden_state and pooler_output). We usually use last_hidden_state when doing token level classification (e.g. named entity recognition).
To use pooler_output would be even simpler, e.g:
net = outputs['pooler_output']
x = tf.keras.layers.Dense(1, name='classifier')(net)
return tf.keras.Model(inputs=text_input, outputs=x)
pooler_output can be used in simpler classification problems (like irony detection), but of course it's still possible to use last_hidden_state to create more powerful models. (When you use bert(input_ids_in, attention_mask=input_masks_in)[0] in your solution, it actually returns last_hidden_state.)
Making sure the model works:
model = build_model()
my_phrase = "Ciao, come va?"
model(tf.constant([my_phrase]))
>>> <tf.Tensor: shape=(1, 110, 1), dtype=float32, numpy=...>,
Making sure HuggingFace part of the model is trainable:
model.summary(show_trainable=True)

tf.keras.backend.function for transforming embeddings inside tf.data.dataset

I am trying to use the output of a neural network to transform data inside tf.data.dataset. Specifically, I am using a Delta-Encoder to manipulate embeddings inside the tf.data pipeline. In so doing, however, I get the following error:
OperatorNotAllowedInGraphError: iterating over `tf.Tensor` is not allowed in Graph execution. Use Eager execution or decorate this function with #tf.function.
I have searched the dataset pipeline page and stack overflow, but I could not find something that addresses my question. In the code below I am using an Autoencoder, as it yields an identical error with more concise code.
The offending part seems to be
[[x,]] = tf.py_function(Auto_Func, [x], [tf.float32])
inside
tf_auto_transform.
num_embeddings = 100
input_dims = 1000
embeddings = np.random.normal(size = (num_embeddings, input_dims)).astype(np.float32)
target = np.zeros(num_embeddings)
#creating Autoencoder
inp = Input(shape = (input_dims,), name ='input')
hidden = Dense(10, activation = 'relu', name = 'hidden')(inp)
out = Dense(input_dims, activation = 'relu', name='output')(hidden)
auto_encoder = tf.keras.models.Model(inputs =inp, outputs=out)
Auto_Func = tf.keras.backend.function(inputs = Autoencoder.get_layer(name='input').input,
outputs = Autoencoder.get_layer(name='output').input )
#Autoencoder transform for dataset.map
def tf_auto_transform(x, target):
x_shape = x.shape
##tf.function
#def func(x):
# return tf.py_function(Auto_Func, [x], [tf.float32])
#[[x,]] = func(x)
[[x,]] = tf.py_function(Auto_Func, [x], [tf.float32])
x.set_shape(x_shape)
return x, target
def get_dataset(X,y, batch_size = 32):
train_ds = tf.data.Dataset.from_tensor_slices((X, y))
train_ds = train_ds.map(tf_auto_transform)
train_ds = train_ds.batch(batch_size)
return train_ds
dataset = get_dataset(embeddings, target, 2)
The above code yields the following error:
OperatorNotAllowedInGraphError: iterating over `tf.Tensor` is not allowed in Graph execution. Use Eager execution or decorate this function with #tf.function.
I tried to eliminate the error by running the commented out section of the tf_auto_transform function, but the error persisted.
SideNote: While it is true that the Delta encoder paper has code, it is written in tf 1.x. I am trying to use tf 2.x with the tf functional API instead. Thank you for your help!
At the risk of outing myself as a n00b, the answer is to switch the order of the map and batch functions. I am trying to apply a neural network to make some changes on data. tf.keras models take batches as input, not individual samples. By batching the data first, I can run batches through my nn.
def get_dataset(X,y, batch_size = 32):
train_ds = tf.data.Dataset.from_tensor_slices((X, y))
#The changed order
train_ds = train_ds.batch(batch_size)
train_ds = train_ds.map(tf_auto_transform)**strong text**
return train_ds
It really is that simple.

Adding custom metric Keras Subclassing API

I'm following the section "Losses and Metrics Based on Model Internals" on chapter 12 of "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition - Aurélien Geron", in which he shows how to add custom losses and metrics that do not depend on labels and predictions.
To illustrate this, we add a custom "reconstruction loss" by adding a layer on top of the upper hidden layer which should reproduce the input. The loss is the mean squared difference betweeen the reconstruction loss and the inputs.
He shows the code for adding the custom loss, which works nicely, but even following his description I cannot make add the metric, since it raises `ValueError". He says:
Similarly, you can add a custom metric based on model internals by
computing it in any way you want, as long as the result is the output of a
metric object. For example, you can create a keras.metrics.Mean object
in the constructor, then call it in the call() method, passing it the
recon_loss, and finally add it to the model by calling the model’s
add_metric() method.
This is the code(I have added #MINE for the lines I have added myself)
import tensorflow as tf
from tensorflow import keras
class ReconstructingRegressor(keras.models.Model):
def __init__(self, output_dim, **kwargs):
super().__init__(**kwargs)
self.hidden = [keras.layers.Dense(30, activation="selu",
kernel_initializer="lecun_normal")
for _ in range(5)]
self.out = keras.layers.Dense(output_dim)
self.reconstruction_mean = keras.metrics.Mean(name="reconstruction_error") #MINE
def build(self, batch_input_shape):
n_inputs = batch_input_shape[-1]
self.reconstruct = keras.layers.Dense(n_inputs)
super().build(batch_input_shape)
def call(self, inputs, training=None):
Z = inputs
for layer in self.hidden:
Z = layer(Z)
reconstruction = self.reconstruct(Z)
recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
self.add_loss(0.05 * recon_loss)
if training: #MINE
result = self.reconstruction_mean(recon_loss) #MINE
else: #MINE
result = 0. #MINE, I have also tried different things here,
#but the help showed a similar sample to this.
self.add_metric(result, name="foo") #MINE
return self.out(Z)
Then compiling and fitting the model:
training_set_size=10
X_dummy = np.random.randn(training_set_size, 8)
y_dummy = np.random.randn(training_set_size, 1)
model = ReconstructingRegressor(1)
model.compile(loss="mse", optimizer="nadam")
history = model.fit(X_dummy, y_dummy, epochs=2)
Which throws:
ValueError: in converted code:
<ipython-input-296-878bdeb30546>:26 call *
self.add_metric(result, name="foo") #MINE
C:\Users\Kique\Anaconda3\envs\piz3\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py:1147 add_metric
self._symbolic_add_metric(value, aggregation, name)
C:\Users\Kique\Anaconda3\envs\piz3\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py:1867 _symbolic_add_metric
'We do not support adding an aggregated metric result tensor that '
ValueError: We do not support adding an aggregated metric result tensor that is not the output of a `tf.keras.metrics.Metric` metric instance. Without having access to the metric instance we cannot reset the state of a metric after every epoch during training. You can create a `tf.keras.metrics.Metric` instance and pass the result here or pass an un-aggregated result with `aggregation` parameter set as `mean`. For example: `self.add_metric(tf.reduce_sum(inputs), name='mean_activation', aggregation='mean')`
Having read that, I tried similar things to solve that issue but it just led to different errors. How can I solve this? What is the "correct" way to do this?
I'm using conda on Windows, with tensorflow-gpu 2.1.0 installed.
The problem is just right here:
def call(self, inputs, training=None):
Z = inputs
for layer in self.hidden:
Z = layer(Z)
reconstruction = self.reconstruct(Z)
recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
self.add_loss(0.05 * recon_loss)
if training:
result = self.reconstruction_mean(recon_loss)
else:
result = 0.#<---Here!
self.add_metric(result, name="foo")
return self.out(Z)
The error says that add_metric only gets a metric derived from tf.keras.metrics.Metric but 0 is a scalar, not a metric type.
My proposed solution is to simply do that:
def call(self, inputs, training=None):
Z = inputs
for layer in self.hidden:
Z = layer(Z)
reconstruction = self.reconstruct(Z)
recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
self.add_loss(0.05 * recon_loss)
if training:
result = self.reconstruction_mean(recon_loss)
self.add_metric(result, name="foo")
return self.out(Z)
This way, your mean reconstruction_error will be shown only in training time.
Since you work with eager mode, you should create your layer with dynamic=True as below:
model = ReconstructingRegressor(1,dynamic=True)
model.compile(loss="mse", optimizer="nadam")
history = model.fit(X_dummy, y_dummy, epochs=2, batch_size=10)
P.S - pay attention, that when calling model.fit or model.evaluate you should also make sure that the batch size divides your train set (since this is a stateful network). So, call those function like this: model.fit(X_dummy, y_dummy, epochs=2, batch_size=10) or model.evaluate(X_dummy,y_dummy, batch_size=10).
Good Luck!

How do I load a checkpoint using tensorflow in eager execution mode?

I am using tensorflow 1.7.0 in eager execution mode. I have the model working, but none of the examples that I have found for saving the model work.
This is the code that I am using:
checkpoint_directory ='./JokeWords/'
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = tfe.Checkpoint(model=model,optimizer=optimizer) # save as "x"
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory))
evaluate(model,jokes,2,32)
....
checkpoint.save(file_prefix=checkpoint_prefix)
I have trained the model and use evaluate to check the results when loading from a restart. Each time I get a random result from evaluate, meaning that the model is not loading from the data, but instead only having random weights.
How do I save the model? It can take days to train one of these.
Edit. Here is the model:
class EagerRNN(tfe.Network):
def __init__(self,embedding, hidden_dim, num_layers, keep_ratio):
super(EagerRNN, self).__init__()
self.keep_ratio = keep_ratio
self.cells = self._add_cells([
tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_dim)
for _ in range(num_layers)
])
self.backcells = self._add_cells([
tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_dim)
for _ in range(num_layers)
])
self.linear = layers.Dense(embedding. vocab_size, kernel_initializer=tf.random_uniform_initializer(-0.1, 0.1))
self.backlinear = layers.Dense(embedding. vocab_size, kernel_initializer=tf.random_uniform_initializer(-0.1, 0.1))
self.attension = layers.Dense(hidden_dim, kernel_initializer=tf.random_uniform_initializer(-0.1, 0.1))
def call(self, input_seq,seq_lengths, training):
lengths=[i[0] for i in seq_lengths]
nRotations=max(lengths)
batchSize=input_seq.shape[0]
input_seq2 = tf.unstack(input_seq, num=int(input_seq.shape[1]), axis=1)
atten = None
state = self.cells[0].zero_state(batchSize, tf.float32)
for i in range(0,nRotations):
for j in range(0,len(self.cells)):
c=self.cells[j]
inp=input_seq2[i]
output, state = c(inp, state)
#input_seq2[i]=(output)
if atten==None:
atten =self.linear(output)
else:
atten=atten+self.linear(output)
for i in range(nRotations-1,-1,-1):
for j in range(0,len(self.backcells)):
c=self.backcells[j]
inp=input_seq2[i]
output, state = c(inp, state)
#input_seq2[i]=(output)
atten=atten+self.backlinear(output)
#input_seq = tf.stack(input_seq2[0:nRotations], axis=1)
atten=self.attension(atten)
if training:
input_seq = tf.nn.dropout(input_seq, self.keep_ratio)
# Returning a list instead of a single tensor so that the line:
# y = self.rnn(y, ...)[0]
# in PTBModel.call works for both this RNN and CudnnLSTM (which returns a
# tuple (output, output_states).
return input_seq,state,atten
def _add_cells(self, cells):
# "Magic" required for keras.Model classes to track all the variables in
# a list of Layer objects.
# TODO(ashankar): Figure out API so user code doesn't have to do this.
for i, c in enumerate(cells):
setattr(self, "cell-%d" % i, c)
return cells
class EagerLSTM_Model(tfe.Network):
"""LSTM for word language modeling.
Model described in:
(Zaremba, et. al.) Recurrent Neural Network Regularization
http://arxiv.org/abs/1409.2329
See also:
https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb
"""
def __init__(self,
embedding,
hidden_dim,
num_layers,
dropout_ratio,
use_cudnn_rnn=True):
super(EagerLSTM_Model, self).__init__()
self.keep_ratio = 1 - dropout_ratio
self.use_cudnn_rnn = use_cudnn_rnn
self.embedding = embedding
if self.use_cudnn_rnn:
self.rnn = cudnn_rnn.CudnnLSTM(
num_layers, hidden_dim, dropout=dropout_ratio)
else:
self.rnn = EagerRNN(embedding,hidden_dim, num_layers, self.keep_ratio)
self.unrnn = EagerUnRNN(embedding,hidden_dim, num_layers, self.keep_ratio)
def callRNN(self, input_seq,seq_lengths, training):
y = self.embedding.callbatchword(input_seq)
if training:
y = tf.nn.dropout(y, self.keep_ratio)
y,state,atten = self.rnn.call(y,seq_lengths, training=training)
return state,atten
def callUnRNN (self,state,atten,seq_lengths, training ):
x,state = self.unrnn(state,atten,seq_lengths,training=training)
#b=tf.reshape(y, self._output_shape)
#c=self.linear(b)
return x
tfe.Network is not (easily) Checkpointable and it will soon be deprecated. Prefer to subclass tf.Keras.Model instead. So if you change class EagerRNN(tfe.Network) to class EagerRNN(tf.keras.Model) and class EagerLSTM_Model(tfe.Network) to class EagerLSTM_Model(tf.keras.Model), checkpoint.save(file_prefix=checkpoint_prefix) should actually save all your variables and checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory)) should restore them.

How to set the input of a Keras layer of a functional model, with a Tensorflow tensor?

I have two packages I'd like to use, one is written in Keras1.2, and the other one in tensorflow. I'd like to use a part of the architecture that is built in tensorflow into a Keras model.
A partial solution is suggested here, but it's for a sequential model. The suggestion regarding functional models - wrapping the pre-processing in a Lambda layer - didn't work.
The following code worked:
inp = Input(shape=input_shape)
def ID(x):
return x
lam = Lambda(ID)
flatten = Flatten(name='flatten')
output = flatten(lam(inp))
Model(input=[inp], output=output)
But, when replacing flatten(lam(inp)) with a pre-processed output tensor flatten(lam(TF_processed_layer)), I got: "Output tensors to a Model must be Keras tensors. Found: Tensor("Reshape:0", shape=(?, ?), dtype=float32)"
You could try wrapping your input tensor into the Keras Input layer and carry on building your model from there. Like so:
inp = Input(tensor=tftensor,shape=input_shape)
def ID(x):
return x
lam = Lambda(ID)
flatten = Flatten(name='flatten')
output = flatten(lam(inp))
Model(input=inp, output=output)
You are not defining your lamba correctly for Keras.
Try something like this
def your_lambda_layer(x):
x -= K.mean(x, axis=1, keepdims=True)
x = K.l2_normalize(x, axis=1)
return x
....
model.add(Lambda(your_lambda_layer))
of seeing you are using the Functional API like this
def your_lambda_layer(x):
x -= K.mean(x, axis=1, keepdims=True)
x = K.l2_normalize(x, axis=1)
return x
....
x = SomeLayerBeforeLambda(options...)(x)
x = (Lambda(your_lambda_layer))(x)
But even so, the lambda layer may not be able to be flattened so printout the shape of the lambda and take a look at it and see what it is.