I am using rapids UMAP in conjunction with HDBSCAN inside a rapidsai docker container : rapidsai/rapidsai-core:0.18-cuda11.0-runtime-ubuntu18.04-py3.7
import cudf
import cupy
from cuml.manifold import UMAP
import hdbscan
from sklearn.datasets import make_blobs
from cuml.experimental.preprocessing import StandardScaler
blobs, labels = make_blobs(n_samples=100000, n_features=10)
df_gpu=cudf.DataFrame(blobs)
scaler= StandardScaler()
cupy_scaled=scaler.fit_transform(df_gpu.values)
projector= UMAP(n_components=3, n_neighbors=2000)
cupy_projected=projector.fit_transform(cupy_scaled)
numpy_projected=cupy.asnumpy(cupy_projected)
clusterer= hdbscan.HDBSCAN(min_cluster_size=1000, prediction_data=True, gen_min_span_tree=True)#, core_dist_n_jobs=1)
clusterer.fit(numpy_projected)
I get an error which is fixed if I use core_dist_n_jobs=1 but makes the code slower:
--------------------------------------------------------------------------- TerminatedWorkerError Traceback (most recent call
last) in
1 clusterer= hdbscan.HDBSCAN(min_cluster_size=1000, prediction_data=True, gen_min_span_tree=True)
----> 2 clusterer.fit(numpy_projected)
/opt/conda/envs/rapids/lib/python3.7/site-packages/hdbscan/hdbscan_.py
in fit(self, X, y)
917 self._condensed_tree,
918 self._single_linkage_tree,
--> 919 self._min_spanning_tree) = hdbscan(X, **kwargs)
920
921 if self.prediction_data:
/opt/conda/envs/rapids/lib/python3.7/site-packages/hdbscan/hdbscan_.py
in hdbscan(X, min_cluster_size, min_samples, alpha,
cluster_selection_epsilon, metric, p, leaf_size, algorithm, memory,
approx_min_span_tree, gen_min_span_tree, core_dist_n_jobs,
cluster_selection_method, allow_single_cluster,
match_reference_implementation, **kwargs)
613 approx_min_span_tree,
614 gen_min_span_tree,
--> 615 core_dist_n_jobs, **kwargs)
616 else: # Metric is a valid BallTree metric
617 # TO DO: Need heuristic to decide when to go to boruvka;
/opt/conda/envs/rapids/lib/python3.7/site-packages/joblib/memory.py in
call(self, *args, **kwargs)
350
351 def call(self, *args, **kwargs):
--> 352 return self.func(*args, **kwargs)
353
354 def call_and_shelve(self, *args, **kwargs):
/opt/conda/envs/rapids/lib/python3.7/site-packages/hdbscan/hdbscan_.py
in _hdbscan_boruvka_kdtree(X, min_samples, alpha, metric, p,
leaf_size, approx_min_span_tree, gen_min_span_tree, core_dist_n_jobs,
**kwargs)
276 leaf_size=leaf_size // 3,
277 approx_min_span_tree=approx_min_span_tree,
--> 278 n_jobs=core_dist_n_jobs, **kwargs)
279 min_spanning_tree = alg.spanning_tree()
280 # Sort edges of the min_spanning_tree by weight
hdbscan/_hdbscan_boruvka.pyx in
hdbscan._hdbscan_boruvka.KDTreeBoruvkaAlgorithm.init()
hdbscan/_hdbscan_boruvka.pyx in
hdbscan._hdbscan_boruvka.KDTreeBoruvkaAlgorithm._compute_bounds()
/opt/conda/envs/rapids/lib/python3.7/site-packages/joblib/parallel.py
in call(self, iterable) 1052 1053 with
self._backend.retrieval_context():
-> 1054 self.retrieve() 1055 # Make sure that we get a last message telling us we are done 1056
elapsed_time = time.time() - self._start_time
/opt/conda/envs/rapids/lib/python3.7/site-packages/joblib/parallel.py
in retrieve(self)
931 try:
932 if getattr(self._backend, 'supports_timeout', False):
--> 933 self._output.extend(job.get(timeout=self.timeout))
934 else:
935 self._output.extend(job.get())
/opt/conda/envs/rapids/lib/python3.7/site-packages/joblib/_parallel_backends.py
in wrap_future_result(future, timeout)
540 AsyncResults.get from multiprocessing."""
541 try:
--> 542 return future.result(timeout=timeout)
543 except CfTimeoutError as e:
544 raise TimeoutError from e
/opt/conda/envs/rapids/lib/python3.7/concurrent/futures/_base.py in
result(self, timeout)
433 raise CancelledError()
434 elif self._state == FINISHED:
--> 435 return self.__get_result()
436 else:
437 raise TimeoutError()
/opt/conda/envs/rapids/lib/python3.7/concurrent/futures/_base.py in
__get_result(self)
382 def __get_result(self):
383 if self._exception:
--> 384 raise self._exception
385 else:
386 return self._result
TerminatedWorkerError: A worker process managed by the executor was
unexpectedly terminated. This could be caused by a segmentation fault
while calling the function or by an excessive memory usage causing the
Operating System to kill the worker.
The exit codes of the workers are {EXIT(1)}
Is there a way to solve this issue but still keep HDBSCAN to be fast?
Try setting min_samples to a value
In https://github.com/scikit-learn-contrib/hdbscan/issues/345#issuecomment-628749332 , lmcinnes says that you "may have issues if your min_cluster_size is large and your min_samples is not set. You could try setting min_samples to something smallish and see if that helps." I noticed that you do not have a min_samples set in your code.
Related
I'm trying to import some public data from the web but can't understand the error.
My code:
import pandas as pd
df2022 = pd.read_excel("https://ofslivefs.blob.core.windows.net/files/NSS%20data%202022/September/NSS2022_summary_data.xlsx")
It returns this:
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
/var/folders/v_/yq26pm194xj5ckqy8p_njwc00000gn/T/ipykernel_89117/2424267382.py in <module>
----> 1 df2022 = pd.read_excel("https://ofslivefs.blob.core.windows.net/files/NSS%20data%202022/September/NSS2022_summary_data.xlsx")
~/opt/anaconda3/lib/python3.9/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
209 else:
210 kwargs[new_arg_name] = new_arg_value
--> 211 return func(*args, **kwargs)
212
213 return cast(F, wrapper)
~/opt/anaconda3/lib/python3.9/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
329 stacklevel=find_stack_level(),
330 )
--> 331 return func(*args, **kwargs)
332
333 # error: "Callable[[VarArg(Any), KwArg(Any)], Any]" has no
~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/excel/_base.py in read_excel(io, sheet_name, header, names, index_col, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, parse_dates, date_parser, thousands, decimal, comment, skipfooter, convert_float, mangle_dupe_cols, storage_options)
480 if not isinstance(io, ExcelFile):
481 should_close = True
--> 482 io = ExcelFile(io, storage_options=storage_options, engine=engine)
483 elif engine and engine != io.engine:
484 raise ValueError(
~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/excel/_base.py in __init__(self, path_or_buffer, engine, storage_options)
1693 self.storage_options = storage_options
1694
-> 1695 self._reader = self._engines[engine](self._io, storage_options=storage_options)
1696
1697 def __fspath__(self):
~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/excel/_openpyxl.py in __init__(self, filepath_or_buffer, storage_options)
555 """
556 import_optional_dependency("openpyxl")
--> 557 super().__init__(filepath_or_buffer, storage_options=storage_options)
558
559 #property
~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/excel/_base.py in __init__(self, filepath_or_buffer, storage_options)
543 self.handles.handle.seek(0)
544 try:
--> 545 self.book = self.load_workbook(self.handles.handle)
546 except Exception:
547 self.close()
~/opt/anaconda3/lib/python3.9/site-packages/pandas/io/excel/_openpyxl.py in load_workbook(self, filepath_or_buffer)
566 from openpyxl import load_workbook
567
--> 568 return load_workbook(
569 filepath_or_buffer, read_only=True, data_only=True, keep_links=False
570 )
~/opt/anaconda3/lib/python3.9/site-packages/openpyxl/reader/excel.py in load_workbook(filename, read_only, keep_vba, data_only, keep_links)
315 reader = ExcelReader(filename, read_only, keep_vba,
316 data_only, keep_links)
--> 317 reader.read()
318 return reader.wb
~/opt/anaconda3/lib/python3.9/site-packages/openpyxl/reader/excel.py in read(self)
281 apply_stylesheet(self.archive, self.wb)
282 self.read_worksheets()
--> 283 self.parser.assign_names()
284 if not self.read_only:
285 self.archive.close()
~/opt/anaconda3/lib/python3.9/site-packages/openpyxl/reader/workbook.py in assign_names(self)
100 reserved = defn.is_reserved
101 if reserved in ("Print_Titles", "Print_Area"):
--> 102 sheet = self.wb._sheets[defn.localSheetId]
103 if reserved == "Print_Titles":
104 rows, cols = _unpack_print_titles(defn)
IndexError: list index out of range
At this point I would traditonally download and convert to CSV but I want to access straight from web.
The sheet (which I guess I could access as sheetname="Q27 Providers (benchmarked)") doesn't work.
It looks like xlsx file is broken, therefore u can't download it. Did u try to open that xlsx file?
I am pretty new to tensorflow Keras and there is a Problem Running Cross Validation that I could not fix. It all worked before I installed featurewiz (conda install -c conda-forge featurewiz).
from sklearn.model_selection import KFold, cross_validate, cross_val_score
from scikeras.wrappers import KerasClassifier
estimator = KerasClassifier(model, epochs=500, batch_size=10) #, verbose = 0
kfold = KFold(n_splits=5, shuffle=True)
results = cross_validate(estimator, X, y, cv=kfold, scoring=['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted'], return_train_score=True)
print(results)
Error:
WARNING:absl:Found untraced functions such as _update_step_xla while saving (showing 1 of 1). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: ram:///var/folders/c4/ywdtx99d1vl0ptsg1fy494_40000gn/T/tmpsuvxkjb9/assets
INFO:tensorflow:Assets written to: ram:///var/folders/c4/ywdtx99d1vl0ptsg1fy494_40000gn/T/tmpsuvxkjb9/assets
---------------------------------------------------------------------------
Empty Traceback (most recent call last)
File ~/tensorflow-test/env/lib/python3.8/site-packages/joblib/parallel.py:862, in Parallel.dispatch_one_batch(self, iterator)
861 try:
--> 862 tasks = self._ready_batches.get(block=False)
863 except queue.Empty:
864 # slice the iterator n_jobs * batchsize items at a time. If the
865 # slice returns less than that, then the current batchsize puts
(...)
868 # accordingly to distribute evenly the last items between all
869 # workers.
File ~/tensorflow-test/env/lib/python3.8/queue.py:167, in Queue.get(self, block, timeout)
166 if not self._qsize():
--> 167 raise Empty
168 elif timeout is None:
Empty:
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
Cell In[5], line 6
4 estimator = KerasClassifier(model, epochs=500, batch_size=10) #, verbose = 0
5 kfold = KFold(n_splits=5, shuffle=True) #seed, damit shuffle gleich bleibt , random_state=1337
----> 6 results = cross_validate(estimator, X, y, cv=kfold, scoring=['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted'], return_train_score=True)
8 print(results)
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:266, in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score)
263 # We clone the estimator to make sure that all the folds are
264 # independent, and that it is pickle-able.
265 parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
--> 266 results = parallel(
267 delayed(_fit_and_score)(
268 clone(estimator),
269 X,
270 y,
271 scorers,
272 train,
273 test,
274 verbose,
275 None,
276 fit_params,
277 return_train_score=return_train_score,
278 return_times=True,
279 return_estimator=return_estimator,
280 error_score=error_score,
281 )
282 for train, test in cv.split(X, y, groups)
283 )
285 _warn_or_raise_about_fit_failures(results, error_score)
287 # For callabe scoring, the return type is only know after calling. If the
288 # return type is a dictionary, the error scores can now be inserted with
289 # the correct key.
File ~/tensorflow-test/env/lib/python3.8/site-packages/joblib/parallel.py:1085, in Parallel.__call__(self, iterable)
1076 try:
1077 # Only set self._iterating to True if at least a batch
1078 # was dispatched. In particular this covers the edge
(...)
1082 # was very quick and its callback already dispatched all the
1083 # remaining jobs.
1084 self._iterating = False
-> 1085 if self.dispatch_one_batch(iterator):
1086 self._iterating = self._original_iterator is not None
1088 while self.dispatch_one_batch(iterator):
File ~/tensorflow-test/env/lib/python3.8/site-packages/joblib/parallel.py:873, in Parallel.dispatch_one_batch(self, iterator)
870 n_jobs = self._cached_effective_n_jobs
871 big_batch_size = batch_size * n_jobs
--> 873 islice = list(itertools.islice(iterator, big_batch_size))
874 if len(islice) == 0:
875 return False
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:268, in <genexpr>(.0)
263 # We clone the estimator to make sure that all the folds are
264 # independent, and that it is pickle-able.
265 parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
266 results = parallel(
267 delayed(_fit_and_score)(
--> 268 clone(estimator),
269 X,
270 y,
271 scorers,
272 train,
273 test,
274 verbose,
275 None,
276 fit_params,
277 return_train_score=return_train_score,
278 return_times=True,
279 return_estimator=return_estimator,
280 error_score=error_score,
281 )
282 for train, test in cv.split(X, y, groups)
283 )
285 _warn_or_raise_about_fit_failures(results, error_score)
287 # For callabe scoring, the return type is only know after calling. If the
288 # return type is a dictionary, the error scores can now be inserted with
289 # the correct key.
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:89, in clone(estimator, safe)
87 new_object_params = estimator.get_params(deep=False)
88 for name, param in new_object_params.items():
---> 89 new_object_params[name] = clone(param, safe=False)
90 new_object = klass(**new_object_params)
91 params_set = new_object.get_params(deep=False)
File ~/tensorflow-test/env/lib/python3.8/site-packages/sklearn/base.py:70, in clone(estimator, safe)
68 elif not hasattr(estimator, "get_params") or isinstance(estimator, type):
69 if not safe:
---> 70 return copy.deepcopy(estimator)
71 else:
72 if isinstance(estimator, type):
File ~/tensorflow-test/env/lib/python3.8/copy.py:153, in deepcopy(x, memo, _nil)
151 copier = getattr(x, "__deepcopy__", None)
152 if copier is not None:
--> 153 y = copier(memo)
154 else:
155 reductor = dispatch_table.get(cls)
File ~/tensorflow-test/env/lib/python3.8/site-packages/scikeras/_saving_utils.py:117, in deepcopy_model(model, memo)
116 def deepcopy_model(model: keras.Model, memo: Dict[Hashable, Any]) -> keras.Model:
--> 117 _, (model_bytes, optimizer_weights) = pack_keras_model(model)
118 new_model = unpack_keras_model(model_bytes, optimizer_weights)
119 memo[model] = new_model
File ~/tensorflow-test/env/lib/python3.8/site-packages/scikeras/_saving_utils.py:108, in pack_keras_model(model)
106 optimizer_weights = None
107 if model.optimizer is not None:
--> 108 optimizer_weights = model.optimizer.get_weights()
109 model_bytes = np.asarray(memoryview(b.read()))
110 return (
111 unpack_keras_model,
112 (model_bytes, optimizer_weights),
113 )
AttributeError: 'Adam' object has no attribute 'get_weights'
I created a Tensorflow enviroment on my M1 Macbook following https://github.com/mrdbourke/m1-machine-learning-test.
It all worked, I got following results:
TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.11.0
I also installed featurewiz, I am not sure if there are some Problems installing it (I did conda install -c conda-forge featurewiz)
SciKeras doesn't work with TensorFlow 2.11. The TensorFlow team release a breaking change in a minor version bump (they removed the get_weights() method). It will be fixed in SciKeras soon: https://github.com/adriangb/scikeras/pull/287
Edit: that PR was merged so the new version of SciKeras (v0.10.0) should solve this issue.
Using jupyterlab, i receive a KeyError: 'Default' when using plt.tight_layout() in combination with %matplotlib widget. The following code reproduces the issue:
import matplotlib.pyplot as plt
import numpy as np
%matplotlib widget
x=np.linspace(0,10)
y=x**2
plt.plot(x,y)
plt.tight_layout()
The complete error message is the following:
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
~/anaconda3/lib/python3.8/site-packages/matplotlib/backend_bases.py in _wait_cursor_for_draw_cm(self)
3024 try:
-> 3025 self.canvas.set_cursor(tools.Cursors.WAIT)
3026 yield
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_webagg_core.py in set_cursor(self, cursor)
209 }, cursor=cursor)
--> 210 self.send_event('cursor', cursor=cursor)
211
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_webagg_core.py in send_event(self, event_type, **kwargs)
391 if self.manager:
--> 392 self.manager._send_event(event_type, **kwargs)
393
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_webagg_core.py in _send_event(self, event_type, **kwargs)
540 for s in self.web_sockets:
--> 541 s.send_json(payload)
542
~/anaconda3/lib/python3.8/site-packages/ipympl/backend_nbagg.py in send_json(self, content)
180 if content['type'] == 'cursor':
--> 181 self._cursor = cursors_str[content['cursor']]
182
KeyError: 'wait'
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
/tmp/ipykernel_119035/3466922198.py in <module>
7 y=x**2
8 plt.plot(x,y)
----> 9 plt.tight_layout()
~/anaconda3/lib/python3.8/site-packages/matplotlib/pyplot.py in tight_layout(pad, h_pad, w_pad, rect)
2300 #_copy_docstring_and_deprecators(Figure.tight_layout)
2301 def tight_layout(*, pad=1.08, h_pad=None, w_pad=None, rect=None):
-> 2302 return gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)
2303
2304
~/anaconda3/lib/python3.8/site-packages/matplotlib/figure.py in tight_layout(self, pad, h_pad, w_pad, rect)
3186 "compatible with tight_layout, so results "
3187 "might be incorrect.")
-> 3188 renderer = _get_renderer(self)
3189 with getattr(renderer, "_draw_disabled", nullcontext)():
3190 kwargs = get_tight_layout_figure(
~/anaconda3/lib/python3.8/site-packages/matplotlib/backend_bases.py in _get_renderer(figure, print_method)
1542 figure.canvas._get_output_canvas(None, fmt), f"print_{fmt}")
1543 try:
-> 1544 print_method(io.BytesIO())
1545 except Done as exc:
1546 renderer, = figure._cachedRenderer, = exc.args
~/anaconda3/lib/python3.8/site-packages/matplotlib/backend_bases.py in wrapper(*args, **kwargs)
1641 kwargs.pop(arg)
1642
-> 1643 return func(*args, **kwargs)
1644
1645 return wrapper
~/anaconda3/lib/python3.8/site-packages/matplotlib/_api/deprecation.py in wrapper(*inner_args, **inner_kwargs)
410 else deprecation_addendum,
411 **kwargs)
--> 412 return func(*inner_args, **inner_kwargs)
413
414 DECORATORS[wrapper] = decorator
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_agg.py in print_png(self, filename_or_obj, metadata, pil_kwargs, *args)
538 *metadata*, including the default 'Software' key.
539 """
--> 540 FigureCanvasAgg.draw(self)
541 mpl.image.imsave(
542 filename_or_obj, self.buffer_rgba(), format="png", origin="upper",
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_agg.py in draw(self)
431 self.renderer = self.get_renderer(cleared=True)
432 # Acquire a lock on the shared font cache.
--> 433 with RendererAgg.lock, \
434 (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar
435 else nullcontext()):
~/anaconda3/lib/python3.8/contextlib.py in __enter__(self)
111 del self.args, self.kwds, self.func
112 try:
--> 113 return next(self.gen)
114 except StopIteration:
115 raise RuntimeError("generator didn't yield") from None
~/anaconda3/lib/python3.8/site-packages/matplotlib/backend_bases.py in _wait_cursor_for_draw_cm(self)
3026 yield
3027 finally:
-> 3028 self.canvas.set_cursor(self._lastCursor)
3029 else:
3030 yield
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_webagg_core.py in set_cursor(self, cursor)
208 backend_tools.Cursors.RESIZE_VERTICAL: 'ns-resize',
209 }, cursor=cursor)
--> 210 self.send_event('cursor', cursor=cursor)
211
212 def set_image_mode(self, mode):
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_webagg_core.py in send_event(self, event_type, **kwargs)
390 def send_event(self, event_type, **kwargs):
391 if self.manager:
--> 392 self.manager._send_event(event_type, **kwargs)
393
394
~/anaconda3/lib/python3.8/site-packages/matplotlib/backends/backend_webagg_core.py in _send_event(self, event_type, **kwargs)
539 payload = {'type': event_type, **kwargs}
540 for s in self.web_sockets:
--> 541 s.send_json(payload)
542
543
~/anaconda3/lib/python3.8/site-packages/ipympl/backend_nbagg.py in send_json(self, content)
179 # Change in the widget state?
180 if content['type'] == 'cursor':
--> 181 self._cursor = cursors_str[content['cursor']]
182
183 elif content['type'] == 'message':
KeyError: 'default'
import numpy as np
import matplotlib.pyplot as plt
m1=np.random.randint(0,20,4*5)
m1.reshape(4,5)
plt.imshow(m1)
**when I have executed above code in python 3 on jupyter notebook, I got Type error anyone please answer to this error in simplest way **
like
TypeError Traceback (most recent call last)
in
----> 1 plt.imshow(m1)
c:\users\jaiprakash\appdata\local\programs\python\python37-32\lib\site-packages\matplotlib\pyplot.py in imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, shape, filternorm, filterrad, imlim, resample, url, data, **kwargs)
2649 filternorm=filternorm, filterrad=filterrad, imlim=imlim,
2650 resample=resample, url=url, **({"data": data} if data is not
-> 2651 None else {}), **kwargs)
2652 sci(__ret)
2653 return __ret
c:\users\jaiprakash\appdata\local\programs\python\python37-32\lib\site-packages\matplotlib\__init__.py in inner(ax, data, *args, **kwargs)
1563 def inner(ax, *args, data=None, **kwargs):
1564 if data is None:
-> 1565 return func(ax, *map(sanitize_sequence, args), **kwargs)
1566
1567 bound = new_sig.bind(ax, *args, **kwargs)
c:\users\jaiprakash\appdata\local\programs\python\python37-32\lib\site-packages\matplotlib\cbook\deprecation.py in wrapper(*args, **kwargs)
356 f"%(removal)s. If any parameter follows {name!r}, they "
357 f"should be pass as keyword, not positionally.")
--> 358 return func(*args, **kwargs)
359
360 return wrapper
c:\users\jaiprakash\appdata\local\programs\python\python37-32\lib\site-packages\matplotlib\cbook\deprecation.py in wrapper(*args, **kwargs)
356 f"%(removal)s. If any parameter follows {name!r}, they "
357 f"should be pass as keyword, not positionally.")
--> 358 return func(*args, **kwargs)
359
360 return wrapper
c:\users\jaiprakash\appdata\local\programs\python\python37-32\lib\site-packages\matplotlib\axes\_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, shape, filternorm, filterrad, imlim, resample, url, **kwargs)
5613 resample=resample, **kwargs)
5614
-> 5615 im.set_data(X)
5616 im.set_alpha(alpha)
5617 if im.get_clip_path() is None:
c:\users\jaiprakash\appdata\local\programs\python\python37-32\lib\site-packages\matplotlib\image.py in set_data(self, A)
697 or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]):
698 raise TypeError("Invalid shape {} for image data"
--> 699 .format(self._A.shape))
700
701 if self._A.ndim == 3:
TypeError: Invalid shape (20,) for image data
When you call m1.reshape(4,5) you dont assign it to a variable. The method wont change the shape of m1 unless you reassign it to m1
import numpy as np
import matplotlib.pyplot as plt
#m1=np.random.randint(low=0, high=20, size=(4,5)) # << personally I would have done this & not bothered with the reshape
m1 = np.random.randint(0,20,4*5)
m1 = m1.reshape(4, 5)
plt.imshow(m1)
When I try to import a meta graph using saver = tf.train.import_meta_graph(meta_graph_path, clear_devices=True) I get KeyError: 'MaxBytesInUse' from within the importer.
Tensorflow version: 1.7-gpu-python3
OS: Ubuntu 16.04
Here is the stack trace of the error:
/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/saver.py in import_meta_graph(meta_graph_or_file, clear_devices, import_scope, **kwargs)
1953 clear_devices=clear_devices,
1954 import_scope=import_scope,
-> 1955 **kwargs)
1956
1957 if meta_graph_def.HasField("saver_def"):
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/meta_graph.py in import_scoped_meta_graph(meta_graph_or_file, clear_devices, graph, import_scope, input_map, unbound_inputs_col_name, restore_collections_predicate)
741 name=(import_scope or scope_to_prepend_to_names),
742 input_map=input_map,
--> 743 producer_op_list=producer_op_list)
744
745 # Restores all the other collections.
/usr/local/lib/python3.5/dist-packages/tensorflow/python/util/deprecation.py in new_func(*args, **kwargs)
430 'in a future version' if date is None else ('after %s' % date),
431 instructions)
--> 432 return func(*args, **kwargs)
433 return tf_decorator.make_decorator(func, new_func, 'deprecated',
434 _add_deprecated_arg_notice_to_docstring(
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/importer.py in import_graph_def(graph_def, input_map, return_elements, name, op_dict, producer_op_list)
458 if producer_op_list is not None:
459 # TODO(skyewm): make a copy of graph_def so we're not mutating the argument?
--> 460 _RemoveDefaultAttrs(op_dict, producer_op_list, graph_def)
461
462 graph = ops.get_default_graph()
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/importer.py in _RemoveDefaultAttrs(op_dict, producer_op_list, graph_def)
225 # Remove any default attr values that aren't in op_def.
226 if node.op in producer_op_dict:
--> 227 op_def = op_dict[node.op]
228 producer_op_def = producer_op_dict[node.op]
229 # We make a copy of node.attr to iterate through since we may modify
KeyError: 'MaxBytesInUse'
Add dir(tf.contrib)
See the link: https://github.com/tensorflow/tensorflow/issues/10130