How to produce a reproducible column of random integers in SQL - sql

I have a table of patient, with a unique patientID column. This patientID cannot be shared with study teams, so I need a randomised set of unique patient identifiers to be able to share. The struggle is that there will be several study teams, so every time a randomised identifier is produced, it needs to be different to the identifier produced for other studies. To make it even more complicated, we need to be able to reproduce the same set of random identifiers for a study at any point (if the study needs to re-run the data for example).
I have looked into the RAND() and NEWID() functions but not managed to figure out a solution. I think this may be possible using RAND() with a seed, and a while loop, but I haven't used these before.
Can anyone provide a solution that allows me to share several randomised sets of unique identifiers, that never have the same identifier for the same patient, and which can be re-run to produce the same list?
Thanks in advance to anyone that helps with this!

Your NEWID() should work as long as you have correct datatype.
Using UNIQUEIDENTIFIER as datatype should be unique across entire database/server. See full details from link below:
sqlshack.com/understanding-the-guid-data-type-in-sql-server
DECLARE #UNI UNIQUEIDENTIFIER
SET #UNI = NEWID()
SELECT #UNI
Comments from link:
As mentioned earlier, GUID values are unique across tables, databases, and servers. GUIDs can be considered as global primary keys. Local primary keys are used to uniquely identify records within a table. On the other hand, GUIDs can be used to uniquely identify records across tables, databases, and servers.

One method is to use the patientid as a seed to rand():
select rand(checksum(patientid))
This returns a value between 0 and 1. You can multiply by a large number.
That said, I think you should keep a list of patients in each study -- so you don't have to reproduce the results. Reproducing results seems dangerous, especially for something like a "study" that could have an impact on health.

This is too much for a comment. It's not black and white from your description and comments what you are asking for, but it appears you want to associate a new random ID value for each existing patients' ID, presumably being able to tie it back to the source ID, and produce the same random ID at a later date repeatedly.
It sounds like you'll need an intermediary table to store the randomly produced IDs (otherwise, being random how do you guarantee to get the same value for the same PatientID?)
Could you therefore have a table something like
create table Synonyms (
Id int not null identity(1,1),
PatientId int not null,
RandomId uniqueidentifier not null default newid(),
Createdate datetime not null default getdate()
)
PatientId is the foreign key to the actual Id of the Patent.
Each time you need a new random PatientId, insert the PatientIDs into this table and then join to it when querying out the patient data, supplying the RandomId instead. That way, you can reproduce the same random Id each time it's needed.
You could have a view that always provides the most recent RandomId value for each PatientId, or by some mechanism to track which "version" a report gets.
If you need a new Id for the patient, insert its Id again and you are guaranteed to get the same Id via whatever logic you need - ie you could have a ReportNo column as a sequence partitioned by PatientId or any number of other ways.
If you prefer to avoid a GUID you could make it an int and use a function to generate it by checking it's not already used, possibly a computed column with an inline function that selects top 1 from a numbers table that doesn't already exist as a RandomId... or something like that!
I may have completely misunderstood, hopefully it might give you some ideas though.

Related

How to create a custom primary key using strings and date

I have an order table in sql server and I need for the order number primary key to be like this
OR\20160202\01
OR is just a string
20160202 is the Date
01 is sequence number for that day
for second Order record the same day it would be
OR\20160202\02 and so on..
backlashes should also be included...
Whats the way to go about creating such a field in sql server (using version 2016)
EDIT: to add more context to what sequence number is, its just a way for this field composite or not to be unique. without a sequence number i would get duplicate records in DB because i could have many records the same day so date would remain the same thus it would be something like
OR\20160202 for all rows for that particular day so it would be duplicate. Adding a "sequence" number helps solve this.
The best way is to not create such a column in SQL. You're effectively combining multiple pieces of data into the same column, which shouldn't happen in a relational database for many reasons. A column should hold one piece of data.
Instead, create a composite primary key across all of the necessary columns.
composite pk
order varchar(20)
orDate DateTime
select *
, row_number() over (partition by cast(orDate as Date) order by orDate) as seq
from table
Will leave it to you on how to concatenate the data
That is presentation thing - don't make it a problem for the PK
About "sequence number for that day" (department, year, country, ...).
Almost every time I discussed such a requirement with end users it turned out to be just misunderstanding of how shared database works, a vague attempt to repeat old (separate databases, EXCEL files or even paper work) tricks on shared database.
So i second Tom H and others, first try not to do it.
If nevertheless you must do it, for legal or other unnegotiatable reasons then i hope you are on 2012+. Create SEQUENCE for every day.
Formatted PK is not a good idea.Composite key is a better approach.The combination of day as a date column and order number as a bigint column should be used.This helps in improving the query performance too.
You might want to explore 'Date Dimension' table. Date Dimension is commonly used table in data warehousing. It stores all the days of the calendar(based on your choice of years) and numeric generated keys for these days. Check this post on date dimension. It talks about creating one in SQL SERVER.
https://www.mssqltips.com/sqlservertip/4054/creating-a-date-dimension-or-calendar-table-in-sql-server/

Is it better to have int joins instead of string columns?

Let's say I have a User which has a status and the user's status can be 'active', 'suspended' or 'inactive'.
Now, when creating the database, I was wondering... would it be better to have a column with the string value (with an enum type, or rule applied) so it's easier to both query and know the current user status or are joins better and I should join in a UserStatuses table which contains the possible user statuses?
Assuming, of course statuses can not be created by the application user.
Edit: Some clarification
I would NOT use string joins, it would be a int join to UserStatuses PK
My primary concern is performance wise
The possible status ARE STATIC and will NEVER change
On most systems it makes little or no difference to performance. Personally I'd use a short string for clarity and join that to a table with more detail as you suggest.
create table intLookup
(
pk integer primary key,
value varchar(20) not null
)
insert into intLookup (pk, value) values
(1,'value 1'),
(2,'value 2'),
(3,'value 3'),
(4,'value 4')
create table stringLookup
(
pk varchar(4) primary key,
value varchar(20) not null
)
insert into stringLookup (pk, value) values
(1,'value 1'),
(2,'value 2'),
(3,'value 3'),
(4,'value 4')
create table masterData
(
stuff varchar(50),
fkInt integer references intLookup(pk),
fkString varchar(4)references stringLookup(pk)
)
create index i on masterData(fkInt)
create index s on masterData(fkString)
insert into masterData
(stuff, fkInt, fkString)
select COLUMN_NAME, (ORDINAL_POSITION %4)+1,(ORDINAL_POSITION %4)+1 from INFORMATION_SCHEMA.COLUMNS
go 1000
This results in 300K rows.
select
*
from masterData m inner join intLookup i on m.fkInt=i.pk
select
*
from masterData m inner join stringLookup s on m.fkString=s.pk
On my system (SQL Server)
- the query plans, I/O and CPU are identical
- execution times are identical.
- The lookup table is read and processed once (in either query)
There is NO difference using an int or a string.
I think, as a whole, everyone has hit on important components of the answer to your question. However, they all have good points which should be taken together, rather than separately.
As logixologist mentioned, a healthy amount of Normalization is generally considered to increase performance. However, in contrast to logixologist, I think your situation is the perfect time for normalization. Your problem seems to be one of normalization. In this case, using a numeric key as Santhosh suggested which then leads back to a code table containing the decodes for the statuses will result in less data being stored per record. This difference wouldn't show in a small Access database, but it would likely show in a table with millions of records, each with a status.
As David Aldridge suggested, you might find that normalizing this particular data point will result in a more controlled end-user experience. Normalizing the status field will also allow you to edit the status flag at a later date in one location and have that change perpetuated throughout the database. If your boss is like mine, then you might have to change the Status of Inactive to Closed (and then back again next week!), which would be more work if the status field was not normalized. By normalizing, it's also easier to enforce referential integrity. If a status key is not in the Status code table, then it can't be added to your main table.
If you're concerned about the performance when querying in the future, then there are some different things to consider. To pull back status, if it's normalized, you'll be adding a join to your query. That join will probably not hurt you in any sized recordset but I believe it will help in larger recordsets by limiting the amount of raw text that must be handled. If your primary concern is performance when querying the data, here's a great resource on how to optimize queries: http://www.sql-server-performance.com/2007/t-sql-where/ and I think you'll find that a lot of the rules discussed here will also apply to any inclusion criteria you enforce in the join itself.
Hope this helps!
Christopher
The whole idea behind normalization is to keep the data from repeating (well at least one of the concepts).
In this case there is only 1 status a user at one time (I assume) can have so their is no reason to put it in its own table. You would simply complicate things. The only reason you would have a seperate table is if for some reason these statuses were not static. Meaning next month you may add "Sort of Active" and "Maybe Inactive". This would mean changing code to make up for that if you didnt put them in their own table. You could create a maintenace page where users could add statuses and then that would require you to create a seperate table.
An issue to consider is whether these status values have attributes of their own.
For example, perhaps you would want to have a default sort order that is different from the alphabetical order of the status text. You might also want to treat two of the statuses in a particular way that you do not treat the other, and that could be an attribute.
If you have a need for that, or suspect a future need for that, then move the status text to a different table and use an integer key value for them.
I would suggest using Integer values like 0, 1, 2. If this is fixed. When interpreting the results in Reports we can change these status back to strings.

Dynamically generate criteria in SQL

I have a Users table that contains dozens of columns like date of birth, year of vehicle owned, make and model of the vehicle, color and many other personal fields unrelated to the vehicle
There's also a 2nd table called Coupons that needs to be designed in a way to support a qualification like "user qualifies if younger than 30 yrs old", "user qualifies if vehicle is greater than 10 yrs old", "user qualifies if vehicle color is green".
When a user logs in, I need to present all coupons the user qualifies for. The problem that I'm having is that the coupon qualifications could be numerous, could have qualifiers like equal, greater than or less than and may have different combinations.
My only solution at this point is to store the actual sql string within one of the coupons table columns like
select * from Users where UserId = SOME_PLACEHOLDER and VehicleYear < 10
Then I could execute the sql for each coupon row and return true or false. Seems very inefficient as I would potentially have to execute 1000s of sql statements for each coupon code.
Any insight, help is appreciated. I do have server-side code where I could potentially be able to do looping.
Thank you.
Very difficult problem. Seems like users will be added at high volume speed, with coupons at a fairly regular frequency.
Adding SQL to a table to be used dynamically is workable - at least you'll get a fresh execution plan - BUT your plan cache may balloon up.
I have a feeling that running a single coupon for all users is probably likely to be your highest performing query because it's one single set of criteria which will be fairly selective on users first and total number of coupons is small, whereas running all coupons for a single user is separate criteria for each coupon for that user. Running all coupons for all users may still perform well, even though it's effectively a cross join first - I guess it is just going to depend.
Anyway, the case for all coupons for all users (or sliced either way, really) will be something like this:
SELECT user.id, coupon.id
FROM user
INNER JOIN coupon
ON (
CASE WHEN <coupon.criteria> THEN <coupon.id> -- code generated from the coupon rules table
CASE WHEN <coupon.criteria> THEN <coupon.id> -- etc.
ELSE NULL
) = coupon.id
To generate the coupon rules, you can relatively easily do the string concatenation in a single swipe (and you can combine an individual rule lines design for a coupon with AND with a further inner template):
DECLARE #outer_template AS varchar(max) = 'SELECT user.id, coupon.id
FROM user
INNER JOIN coupon
ON (
{template}
ELSE NULL
) = coupon.id
';
DECLARE #template AS varchar(max) = 'CASE WHEN {coupon.rule} THEN {coupon.id}{crlf}';
DECLARE #coupon AS TABLE (id INT, [rule] varchar(max));
INSERT INTO #coupon VALUES
(1, 'user.Age BETWEEN 20 AND 29')
,(2, 'user.Color = ''Yellow''');
DECLARE #sql AS varchar(MAX) = REPLACE(
#outer_template
,'{template}',
REPLACE((
SELECT REPLACE(REPLACE(
#template
,'{coupon.rule}', coupon.[rule])
, '{coupon.id}', coupon.id)
FROM #coupon AS coupon
FOR XML PATH('')
), '{crlf}', CHAR(13) + CHAR(10)));
PRINT #sql;
// EXEC (#sql);
There's ways to pretty that up - play with it here: https://data.stackexchange.com/stackoverflow/q/115098/
I would consider adding computed columns (possibly persisted and indexed) to assist. For instance, age - non-persisted computed column will likely perform better than a scalar function.
I would consider batching this with a table which says whether a coupon is valid for a user and when it was last validated.
Seems like ages can change and a user can become valid or invalid for a coupon as their birthday passes.
When a user logs in you could spawn a background job to update their coupons. On subsequent logons, there won't be any need to update (since it's not likely to change until the next day or a triggering event).
Just a few ideas.
I would also add that you should have a way to test a coupon before it is approved to ensure there are no syntax errors (since the SQL is ad hoc or arbitrary) - this can be done relatively easily - perhaps a test user table (test_user as user in the generated code template instead) is required to contain pass and fail rows and the coupon rule points to those. Not only does the EXEC have to work - the rows it returns should be the expected and only the expected rows for that coupon.
This is not an easy problem. Here are some quick ideas that may help depending on your domain requirements:
Restrict the type of criteria you will be filtering on so that you can use dynamic or non-dynamic sql to execute them efficiently. For example if you are going to only have integers between a range of min and max values as a criteria then the problem becomes simpler. (You only need to know the field name, and the min max values to describe a criterian, not the full where statement.)
Create a number of views which expose the attributes in a helpful way. Then perform queries against those views -- or have those views pre-select in some way. For example, an age group view that has a field which can contain the values < 21, 21-30, 30-45, >45. Then your select just needs to return the rows from this view that match these strings.
Create a table which stores the results of running your criteria matching query (This can be run off line by a back ground process). Then for a given user check for membership by looking where in the table this user's ID exists.
Thinking about this some more I realize all my suggestions are based on one idea.
A query for an individual user will work faster overall if you first perform an SQL query against all users and cache that result in some way. If every user is reproducing queries against the whole dataset you will lose efficiency. You need some way to cache results and reuse them.
Hope this helps -- comment if these ideas are not clear.
My first thought on an approach (similar to Hogan's) would be to test for coupon applicability at the time the coupon is created. Store those results in a table (User_Coupons for example). If any user data is changed, your system would then retest any changed users for which coupons are applicable to them. At coupon creation (or change) time it would only check versus that coupon. At use creation (or change) time it would only check versus that user.
The coupon criteria should be from a known set of possible criteria and any time that you want to add a new type of criteria, it would possibly involve a code change. For example, let's say that you have a table set up similar to this:
CREATE TABLE Coupon_Criteria (
coupon_id INT NOT NULL,
age_minimum SMALLINT NULL,
age_maximum SMALLINT NULL,
vehicle_color VARCHAR(20) NULL,
...
CONSTRAINT PK_Coupon_Criteria PRIMARY KEY CLUSTERED (coupon_id)
)
If you wanted to add the ability to base a coupon on vehicle age then you would have to add a column to the table and likewise you would have to adjust your search code. You would use NULL values to indicate that the criteria is unused for that coupon.
An example query for the above table:
SELECT
CC.coupon_id
FROM
Users U
INNER JOIN Coupon_Criteria CC ON
(CC.age_maximum IS NULL OR dbo.f_GetAge(U.birthday) <= age_maximum) AND
(CC.age_minimum IS NULL OR dbo.f_GetAge(U.birthday) >= age_minimum) AND
(CC.vehicle_color IS NULL OR U.vehicle_color = CC.vehicle_color) AND
...
This can get unwieldy if the number of possible criteria gets to be very large.
Another possibility would be to save the coupon criteria in XML and have a business object for your application use that to determine eligibility. It could use the XML to generate a proper query against the User table (and any other necessary tables).
Here's another possibility. Each criteria could be given a query template which you could append to your queries. This would just involve updates to the data instead of DDL and could have good performance. It would involve dynamic SQL.
CREATE TABLE Coupons (
coupon_id INT NOT NULL,
description VARCHAR(2000) NOT NULL,
...
CONSTRAINT PK_Coupons PRIMARY KEY CLUSTERED (coupon_id)
)
CREATE TABLE Coupon_Criteria (
coupon_id INT NOT NULL,
criteria_num SMALLINT NOT NULL,
description VARCHAR(50) NOT NULL,
code_template VARCHAR(500) NOT NULL,
CONSTRAINT PK_Coupon_Criteria PRIMARY KEY CLUSTERED (coupon_id, criteria_num),
CONSTRAINT FK_Coupon_Criteria_Coupon FOREIGN KEY (coupon_id) REFERENCES Coupons (coupon_id)
)
INSERT INTO Coupons (coupon_id, description)
VALUES (1, 'Young people save $200 on yellow vehicles!')
INSERT INTO Coupon_Criteria (coupon_id, criteria_num, description, code_template)
VALUES (1, 1, 'Young people', 'dbo.Get_Age(U.birthday) <= 20')
INSERT INTO Coupon_Criteria (coupon_id, criteria_num, description, code_template)
VALUES (1, 2, 'Yellow Vehicles', U.vehicle_color = ''Yellow''')
You could then build a query by simply concatenating all of the criteria for any given coupon. The big downside to this one is that it's only one-directional. Given a coupon you can easily find who is qualified for it, but given a user you cannot find all coupons for which they are eligible except by going through all of the coupons. My guess is that the second is what you'd probably be most interested in unfortunately. Maybe this will give you some other ideas though.
For example, you could potentially have it work the other way by having a set number of criteria in a table and for the coupon/criteria linking table indicate whether or not that criteria is active. When querying you could then include that in your query. In other words, the query would look something like:
WHERE
(CC.is_active = 0 OR <code from the code column>) AND
The querying gets very complex though since you either need to join once for every possible criteria or you need to query to compare the number of active requirements for a coupon versus the number that are fulfilled. That is possible in SQL, but it's similar to working with an EAV model - which is basically what this turns into: a variation on an EAV model (yuck)

Generate unique ID to share with multiple tables SQL 2008

I have a couple of tables in a SQL 2008 server that I need to generate unique ID's for. I have looked at the "identity" column but the ID's really need to be unique and shared between all the tables.
So if I have say (5) five tables of the flavour "asset infrastructure" and I want to run with a unique ID between them as a combined group, I need some sort of generator that looks at all (5) five tables and issues the next ID which is not duplicated in any of those (5) five tales.
I know this could be done with some sort of stored procedure but I'm not sure how to go about it. Any ideas?
The simplest solution is to set your identity seeds and increment on each table so they never overlap.
Table 1: Seed 1, Increment 5
Table 2: Seed 2, Increment 5
Table 3: Seed 3, Increment 5
Table 4: Seed 4, Increment 5
Table 5: Seed 5, Increment 5
The identity column mod 5 will tell you which table the record is in. You will use up your identity space five times faster so make sure the datatype is big enough.
Why not use a GUID?
You could let them each have an identity that seeds from numbers far enough apart never to collide.
GUIDs would work but they're butt-ugly, and non-sequential if that's significant.
Another common technique is to have a single-column table with an identity that dispenses the next value each time you insert a record. If you need them pulling from a common sequence, it's not unlikely to be useful to have a second column indicating which table it was dispensed to.
You realize there are logical design issues with this, right?
Reading into the design a bit, it sounds like what you really need is a single table called "Asset" with an identity column, and then either:
a) 5 additional tables for the subtypes of assets, each with a foreign key to the primary key on Asset; or
b) 5 views on Asset that each select a subset of the rows and then appear (to users) like the 5 original tables you have now.
If the columns on the tables are all the same, (b) is the better choice; if they're all different, (a) is the better choice. This is a classic DB spin on the supertype / subtype relationship.
Alternately, you could do what you're talking about and recreate the IDENTITY functionality yourself with a stored proc that wraps INSERT access on all 5 tables. Note that you'll have to put a TRANSACTION around it if you want guarantees of uniqueness, and if this is a popular table, that might make it a performance bottleneck. If that's not a concern, a proc like that might take the form:
CREATE PROCEDURE InsertAsset_Table1 (
BEGIN TRANSACTION
-- SELECT MIN INTEGER NOT ALREADY USED IN ANY OF THE FIVE TABLES
-- INSERT INTO Table1 WITH THAT ID
COMMIT TRANSACTION -- or roll back on error, etc.
)
Again, SQL is highly optimized for helping you out if you choose the patterns I mention above, and NOT optimized for this kind of thing (there's overhead with creating the transaction AND you'll be issuing shared locks on all 5 tables while this process is going on). Compare that with using the PK / FK method above, where SQL Server knows exactly how to do it without locks, or the view method, where you're only inserting into 1 table.
I found this when searching on google. I am facing a simillar problem for the first time. I had the idea to have a dedicated ID table specifically to generate the IDs but I was unsure if it was something that was considered OK design. So I just wanted to say THANKS for confirmation.. it looks like it is an adequate sollution although not ideal.
I have a very simple solution. It should be good for cases when the number of tables is small:
create table T1(ID int primary key identity(1,2), rownum varchar(64))
create table T2(ID int primary key identity(2,2), rownum varchar(64))
insert into T1(rownum) values('row 1')
insert into T1(rownum) values('row 2')
insert into T1(rownum) values('row 3')
insert into T2(rownum) values('row 1')
insert into T2(rownum) values('row 2')
insert into T2(rownum) values('row 3')
select * from T1
select * from T2
drop table T1
drop table T2
This is a common problem for example when using a table of people (called PERSON singular please) and each person is categorized, for example Doctors, Patients, Employees, Nurse etc.
It makes a lot of sense to create a table for each of these people that contains thier specific category information like an employees start date and salary and a Nurses qualifications and number.
A Patient for example, may have many nurses and doctors that work on him so a many to many table that links Patient to other people in the PERSON table facilitates this nicely. In this table there should be some description of the realtionship between these people which leads us back to the categories for people.
Since a Doctor and a Patient could create the same Primary Key ID in their own tables, it becomes very useful to have a Globally unique ID or Object ID.
A good way to do this as suggested, is to have a table designated to Auto Increment the primary key. Perform an Insert on that Table first to obtain the OID, then use it for the new PERSON.
I like to go a step further. When things get ugly (some new developer gets got his hands on the database, or even worse, a really old developer, then its very useful to add more meaning to the OID.
Usually this is done programatically, not with the database engine, but if you use a BIG INT for all the Primary Key ID's then you have lots of room to prefix a number with visually identifiable sequence. For example all Doctors ID's could begin with 100, all patients with 110, all Nurses with 120.
To that I would append say a Julian date or a Unix date+time, and finally append the Auto Increment ID.
This would result in numbers like:
110,2455892,00000001
120,2455892,00000002
100,2455892,00000003
since the Julian date 100yrs from now is only 2492087, you can see that 7 digits will adequately store this value.
A BIGINT is 64-bit (8 byte) signed integer with a range of -9.22x10^18 to 9.22x10^18 ( -2^63 to 2^63 -1). Notice the exponant is 18. That's 18 digits you have to work with.
Using this design, you are limited to 100 million OID's, 999 categories of people and dates up to... well past the shelf life of your databse, but I suspect thats good enough for most solutions.
The operations required to created an OID like this are all Multiplication and Division which avoids all the gear grinding of text manipulation.
The disadvantage is that INSERTs require more than a simple TSQL statement, but the advantage is that when you are tracking down errant data or even being clever in your queries, your OID is visually telling you alot more than a random number or worse, an eyesore like GUID.

Linked List in SQL

What's the best way to store a linked list in a MySQL database so that inserts are simple (i.e. you don't have to re-index a bunch of stuff every time) and such that the list can easily be pulled out in order?
Using Adrian's solution, but instead of incrementing by 1, increment by 10 or even 100. Then insertions can be calculated at half of the difference of what you're inserting between without having to update everything below the insertion. Pick a number large enough to handle your average number of insertions - if its too small then you'll have to fall back to updating all rows with a higher position during an insertion.
create a table with two self referencing columns PreviousID and NextID. If the item is the first thing in the list PreviousID will be null, if it is the last, NextID will be null. The SQL will look something like this:
create table tblDummy
{
PKColumn int not null,
PreviousID int null,
DataColumn1 varchar(50) not null,
DataColumn2 varchar(50) not null,
DataColumn3 varchar(50) not null,
DataColumn4 varchar(50) not null,
DataColumn5 varchar(50) not null,
DataColumn6 varchar(50) not null,
DataColumn7 varchar(50) not null,
NextID int null
}
Store an integer column in your table called 'position'. Record a 0 for the first item in your list, a 1 for the second item, etc. Index that column in your database, and when you want to pull your values out, sort by that column.
alter table linked_list add column position integer not null default 0;
alter table linked_list add index position_index (position);
select * from linked_list order by position;
To insert a value at index 3, modify the positions of rows 3 and above, and then insert:
update linked_list set position = position + 1 where position >= 3;
insert into linked_list (my_value, position) values ("new value", 3);
A linked list can be stored using recursive pointers in the table. This is very much the same hierarchies are stored in Sql and this is using the recursive association pattern.
You can learn more about it here (Wayback Machine link).
I hope this helps.
The simplest option would be creating a table with a row per list item, a column for the item position, and columns for other data in the item. Then you can use ORDER BY on the position column to retrieve in the desired order.
create table linked_list
( list_id integer not null
, position integer not null
, data varchar(100) not null
);
alter table linked_list add primary key ( list_id, position );
To manipulate the list just update the position and then insert/delete records as needed. So to insert an item into list 1 at index 3:
begin transaction;
update linked_list set position = position + 1 where position >= 3 and list_id = 1;
insert into linked_list (list_id, position, data)
values (1, 3, "some data");
commit;
Since operations on the list can require multiple commands (eg an insert will require an INSERT and an UPDATE), ensure you always perform the commands within a transaction.
A variation of this simple option is to have position incrementing by some factor for each item, say 100, so that when you perform an INSERT you don't always need to renumber the position of the following elements. However, this requires a little more effort to work out when to increment the following elements, so you lose simplicity but gain performance if you will have many inserts.
Depending on your requirements other options might appeal, such as:
If you want to perform lots of manipulations on the list and not many retrievals you may prefer to have an ID column pointing to the next item in the list, instead of using a position column. Then you need to iterative logic in the retrieval of the list in order to get the items in order. This can be relatively easily implemented in a stored proc.
If you have many lists, a quick way to serialise and deserialise your list to text/binary, and you only ever want to store and retrieve the entire list, then store the entire list as a single value in a single column. Probably not what you're asking for here though.
This is something I've been trying to figure out for a while myself. The best way I've found so far is to create a single table for the linked list using the following format (this is pseudo code):
LinkedList(
key1,
information,
key2
)
key1 is the starting point. Key2 is a foreign key linking to itself in the next column. So your columns will link something link something like this
col1
key1 = 0,
information= 'hello'
key2 = 1
Key1 is primary key of col1. key2 is a foreign key leading to the key1 of col2
col2
key1 = 1,
information= 'wassup'
key2 = null
key2 from col2 is set to null because it doesn't point to anything
When you first enter a column in for the table, you'll need to make sure key2 is set to null or you'll get an error. After you enter the second column, you can go back and set key2 of the first column to the primary key of the second column.
This makes the best method to enter many entries at a time, then go back and set the foreign keys accordingly (or build a GUI that just does that for you)
Here's some actual code I've prepared (all actual code worked on MSSQL. You may want to do some research for the version of SQL you are using!):
createtable.sql
create table linkedlist00 (
key1 int primary key not null identity(1,1),
info varchar(10),
key2 int
)
register_foreign_key.sql
alter table dbo.linkedlist00
add foreign key (key2) references dbo.linkedlist00(key1)
*I put them into two seperate files, because it has to be done in two steps. MSSQL won't let you do it in one step, because the table doesn't exist yet for the foreign key to reference.
Linked List is especially powerful in one-to-many relationships. So if you've ever wanted to make an array of foreign keys? Well this is one way to do it! You can make a primary table that points to the first column in the linked-list table, and then instead of the "information" field, you can use a foreign key to the desired information table.
Example:
Let's say you have a Bureaucracy that keeps forms.
Let's say they have a table called file cabinet
FileCabinet(
Cabinet ID (pk)
Files ID (fk)
)
each column contains a primary key for the cabinet and a foreign key for the files. These files could be tax forms, health insurance papers, field trip permissions slips etc
Files(
Files ID (pk)
File ID (fk)
Next File ID (fk)
)
this serves as a container for the Files
File(
File ID (pk)
Information on the file
)
this is the specific file
There may be better ways to do this and there are, depending on your specific needs. The example just illustrates possible usage.
There are a few approaches I can think of right off, each with differing levels of complexity and flexibility. I'm assuming your goal is to preserve an order in retrieval, rather than requiring storage as an actual linked list.
The simplest method would be to assign an ordinal value to each record in the table (e.g. 1, 2, 3, ...). Then, when you retrieve the records, specify an order-by on the ordinal column to get them back in order.
This approach also allows you to retrieve the records without regard to membership in a list, but allows for membership in only one list, and may require an additional "list id" column to indicate to which list the record belongs.
An slightly more elaborate, but also more flexible approach would be to store information about membership in a list or lists in a separate table. The table would need 3 columns: The list id, the ordinal value, and a foreign key pointer to the data record. Under this approach, the underlying data knows nothing about its membership in lists, and can easily be included in multiple lists.
This post is old but still going to give my .02$. Updating every record in a table or record set sounds crazy to solve ordering. the amount of indexing also crazy, but it sounds like most have accepted it.
Crazy solution i came up with to reduce updates and indexing is to create two tables (and in most use cases you don's sort all records in just one table anyway). Table A to hold the records of the list being sorted and table B to group and hold a record of the order as a string. the order string represents an array that can be used to order the selected records either on the web server or browser layer of a webpage application.
Create Table A{
Id int primary key identity(1,1),
Data varchar(10) not null
B_Id int
}
Create Table B{
Id int primary key Identity(1,1),
GroupName varchat(10) not null,
Order varchar(max) null
}
The format of the order sting should be id, position and some separator to split() your string by. in the case of jQuery UI the .sortable('serialize') function outputs an order string for you that is POST friendly that includes the id and position of each record in the list.
The real magic is the way you choose to reorder the selected list using the saved ordering string. this will depend on the application you are building. here is an example again from jQuery to reorder the list of items: http://ovisdevelopment.com/oramincite/?p=155
https://dba.stackexchange.com/questions/46238/linked-list-in-sql-and-trees suggests a trick of using floating-point position column for fast inserts and ordering.
It also mentions specialized SQL Server 2014 hierarchyid feature.
I think its much simpler adding a created column of Datetime type and a position column of int, so now you can have duplicate positions, at the select statement use the order by position, created desc option and your list will be fetched in order.
Increment the SERIAL 'index' by 100, but manually add intermediate values with an 'index' equal to Prev+Next / 2. If you ever saturate the 100 rows, reorder the index back to 100s.
This should maintain sequence with primary index.
A list can be stored by having a column contain the offset (list index position) -- an insert in the middle is then incrementing all above the new parent and then doing an insert.
You could implement it like a double ended queue (deque) to support fast push/pop/delete(if oridnal is known) and retrieval you would have two data structures. One with the actual data and another with the number of elements added over the history of the key. Tradeoff: This method would be slower for any insert into the middle of the linked list O(n).
create table queue (
primary_key,
queue_key
ordinal,
data
)
You would have an index on queue_key+ordinal
You would also have another table which stores the number of rows EVER added to the queue...
create table queue_addcount (
primary_key,
add_count
)
When pushing a new item to either end of the queue (left or right) you would always increment the add_count.
If you push to the back you could set the ordinal...
ordinal = add_count + 1
If you push to the front you could set the ordinal...
ordinal = -(add_count + 1)
update
add_count = add_count + 1
This way you can delete anywhere in the queue/list and it would still return in order and you could also continue to push new items maintaining the order.
You could optionally rewrite the ordinal to avoid overflow if a lot of deletes have occurred.
You could also have an index on the ordinal to support fast ordered retrieval of the list.
If you want to support inserts into the middle you would need to find the ordinal which it needs to be insert at then insert with that ordinal. Then increment every ordinal by one following that insertion point. Also, increment the add_count as usual. If the ordinal is negative you could decrement all of the earlier ordinals to do fewer updates. This would be O(n)