pandas: get range between date columns - pandas

I have pandas DataFrame:
start_date finish_date progress_id
0 2018-06-23 08:28:50.681065+00 2018-06-23 08:28:52.439542+00 a387ab916f402cb3fbfffd29f68fd0ce
1 2019-03-18 14:23:17.328374+00 2019-03-18 14:54:50.979612+00 3b9dce04f32da32763124602557f92a3
2 2019-07-09 09:18:46.19862+00 2019-07-11 08:03:09.222385+00 73e17a05355852fe65b785c82c37d1ad
3 2018-07-27 15:39:17.666629+00 2018-07-27 16:13:55.086871+00 cc3eb34ae49c719648352c4175daee88
4 2019-04-24 18:42:40.272854+00 2019-04-24 18:44:57.507857+00 04ace4fe130d90c801e24eea13ee808e
I converted columns to datetime.date because I don't need time in df:
df['start_date'] = pd.to_datetime(df['start_date']).dt.date
df['finish_date'] = pd.to_datetime(df['finish_date']).dt.date
So, I need a new column which will be contain year-month if start_date and finish_date have same month. And if different put range between them. For example start_date = 06-2020, finish_date = 08-2020 the result is [06-2020, 07-2020, 08-2020]. Then I need to explode it by column.
I tried:
df['range'] = df.apply(lambda x: pd.date_range(x['start_date'], x['finish_date'], freq="M"), axis=1)
df = df.explode('range')
but as a result I had many NaT's in the column.
Any solutions will be great.

One alternative is the following. Assume you have the following dataframe, df:
start_date finish_date \
0 2018-06-23 08:28:50.681065+00 2018-06-23 08:28:52.439542+00
1 2019-03-18 14:23:17.328374+00 2019-03-18 14:54:50.979612+00
2 2019-07-09 09:18:46.19862+00 2019-07-11 08:03:09.222385+00
3 2018-07-27 15:39:17.666629+00 2018-07-27 16:13:55.086871+00
4 2019-04-24 18:42:40.272854+00 2019-04-24 18:44:57.507857+00
5 2019-05-24 18:42:40.272854+00 2019-04-24 18:44:57.507857+00
progress_id
0 a387ab916f402cb3fbfffd29f68fd0ce
1 3b9dce04f32da32763124602557f92a3
2 73e17a05355852fe65b785c82c37d1ad
3 cc3eb34ae49c719648352c4175daee88
4 04ace4fe130d90c801e24eea13ee808e
5 04ace4fe130d90c801e24eea13ee808e
It is the same you shared pllus one row where the dates (year and month) differ.
Then applying this:
df['start_date'] = pd.to_datetime(df['start_date'],format='%Y-%m-%d')
df['finish_date'] = pd.to_datetime(df['finish_date'],format='%Y-%m-%d')
df['finish_M_Y'] = df['finish_date'].dt.strftime('%Y-%m')
df['Start_M_Y'] = df['start_date'].dt.strftime('%Y-%m')
def range(row):
if row['Start_M_Y'] == row['finish_M_Y']:
val = row['Start_M_Y']
elif row['Start_M_Y'] != row['finish_M_Y']:
val = pd.date_range(row['Start_M_Y'] , row['finish_M_Y'], freq='M')
else:
val = -1
return val
df['Range'] = df.apply(range, axis=1)
df.explode('Range').drop(['Start_M_Y', 'finish_M_Y'], axis=1)
gives you
start_date finish_date \
0 2018-06-23 08:28:50.681065+00:00 2018-06-23 08:28:52.439542+00:00
1 2019-03-18 14:23:17.328374+00:00 2019-03-18 14:54:50.979612+00:00
2 2019-07-09 09:18:46.198620+00:00 2019-07-11 08:03:09.222385+00:00
3 2018-07-27 15:39:17.666629+00:00 2018-07-27 16:13:55.086871+00:00
4 2019-04-24 18:42:40.272854+00:00 2019-04-24 18:44:57.507857+00:00
5 2019-05-24 18:42:40.272854+00:00 2019-10-24 18:44:57.507857+00:00
5 2019-05-24 18:42:40.272854+00:00 2019-10-24 18:44:57.507857+00:00
5 2019-05-24 18:42:40.272854+00:00 2019-10-24 18:44:57.507857+00:00
5 2019-05-24 18:42:40.272854+00:00 2019-10-24 18:44:57.507857+00:00
5 2019-05-24 18:42:40.272854+00:00 2019-10-24 18:44:57.507857+00:00
progress_id Range
0 a387ab916f402cb3fbfffd29f68fd0ce 2018-06
1 3b9dce04f32da32763124602557f92a3 2019-03
2 73e17a05355852fe65b785c82c37d1ad 2019-07
3 cc3eb34ae49c719648352c4175daee88 2018-07
4 04ace4fe130d90c801e24eea13ee808e 2019-04
5 04ace4fe130d90c801e24eea13ee808e 2019-05-31 00:00:00
5 04ace4fe130d90c801e24eea13ee808e 2019-06-30 00:00:00
5 04ace4fe130d90c801e24eea13ee808e 2019-07-31 00:00:00
5 04ace4fe130d90c801e24eea13ee808e 2019-08-31 00:00:00
5 04ace4fe130d90c801e24eea13ee808e 2019-09-30 00:00:00

Related

Merging two series with alternating dates into one grouped Pandas dataframe

Given are two series, like this:
#period1
DATE
2020-06-22 310.62
2020-06-26 300.05
2020-09-23 322.64
2020-10-30 326.54
#period2
DATE
2020-06-23 312.05
2020-09-02 357.70
2020-10-12 352.43
2021-01-25 384.39
These two series are correlated to each other, i.e. they each mark either the beginning or the end of a date period. The first series marks the end of a period1 period, the second series marks the end of period2 period. The end of a period2 period is at the same time also the start of a period1 period, and vice versa.
I've been looking for a way to aggregate these periods as date ranges, but apparently this is not easily possible with Pandas dataframes. Suggestions extremely welcome.
In the easiest case, the output layout should reflect the end dates of periods, which period type it was, and the amount of change between start and stop of the period.
Explicit output:
DATE CHG PERIOD
2020-06-22 NaN 1
2020-06-23 1.43 2
2020-06-26 12.0 1
2020-09-02 57.65 2
2020-09-23 35.06 1
2020-10-12 29.79 2
2020-10-30 25.89 1
2021-01-25 57.85 2
However, if there is any possibility of actually grouping by a date range consisting of start AND stop date, that would be much more favorable
Thank you!
p1 = pd.DataFrame(data={'Date': ['2020-06-22', '2020-06-26', '2020-09-23', '2020-10-30'], 'val':[310.62, 300.05, 322.64, 326.54]})
p2 = pd.DataFrame(data={'Date': ['2020-06-23', '2020-09-02', '2020-10-12', '2021-01-25'], 'val':[312.05, 357.7, 352.43, 384.39]})
p1['period'] = 1
p2['period'] = 2
df = p1.append(p2).sort_values('Date').reset_index(drop=True)
df['CHG'] = abs(df['val'].diff(periods=1))
df.drop('val', axis=1)
Output:
Date period CHG
0 2020-06-22 1 NaN
1 2020-06-23 2 1.43
2 2020-06-26 1 12.00
3 2020-09-02 2 57.65
4 2020-09-23 1 35.06
5 2020-10-12 2 29.79
6 2020-10-30 1 25.89
7 2021-01-25 2 57.85
EDIT: matching the format START - STOP - CHANGE - PERIOD
Starting from the above data frame:
df['Start'] = df.Date.shift(periods=1)
df.rename(columns={'Date': 'Stop'}, inplace=True)
df = df1[['Start', 'Stop', 'CHG', 'period']]
df
Output:
Start Stop CHG period
0 NaN 2020-06-22 NaN 1
1 2020-06-22 2020-06-23 1.43 2
2 2020-06-23 2020-06-26 12.00 1
3 2020-06-26 2020-09-02 57.65 2
4 2020-09-02 2020-09-23 35.06 1
5 2020-09-23 2020-10-12 29.79 2
6 2020-10-12 2020-10-30 25.89 1
7 2020-10-30 2021-01-25 57.85 2
# If needed:
df1.index = pd.to_datetime(df1.index)
df2.index = pd.to_datetime(df2.index)
df = pd.concat([df1, df2], axis=1)
df.columns = ['start','stop']
df['CNG'] = df.bfill(axis=1)['start'].diff().abs()
df['PERIOD'] = 1
df.loc[df.stop.notna(), 'PERIOD'] = 2
df = df[['CNG', 'PERIOD']]
print(df)
Output:
CNG PERIOD
Date
2020-06-22 NaN 1
2020-06-23 1.43 2
2020-06-26 12.00 1
2020-09-02 57.65 2
2020-09-23 35.06 1
2020-10-12 29.79 2
2020-10-30 25.89 1
2021-01-25 57.85 2
2021-01-29 14.32 1
2021-02-12 22.57 2
2021-03-04 15.94 1
2021-05-07 45.42 2
2021-05-12 16.71 1
2021-09-02 47.78 2
2021-10-04 24.55 1
2021-11-18 41.09 2
2021-12-01 19.23 1
2021-12-10 20.24 2
2021-12-20 15.76 1
2022-01-03 22.73 2
2022-01-27 46.47 1
2022-02-09 26.30 2
2022-02-23 35.59 1
2022-03-02 15.94 2
2022-03-08 21.64 1
2022-03-29 45.30 2
2022-04-29 49.55 1
2022-05-04 17.06 2
2022-05-12 36.72 1
2022-05-17 15.98 2
2022-05-19 18.86 1
2022-06-02 27.93 2
2022-06-17 51.53 1

How to convert to datetime if the format of dates changes gradually through the column?

df.head():
start_date end_date
0 03.09.2013 03.09.2025
1 09.08.2019 14.05.2020
2 03.08.2015 03.08.2019
3 31.03.2014 31.03.2019
4 02.02.2015 02.02.2019
5 21.08.2019 21.08.2024
when I do df.tail():
start_date end_date
30373 2019-07-05 00:00:00 2023-07-05 00:00:00
30374 2019-06-11 00:00:00 2023-06-11 00:00:00
30375 19.01.2017 2020-02-09 00:00:00 #these 2 start dates are just same as in head
30376 11.12.2009 2011-12-11 00:00:00
30377 2019-07-30 00:00:00 2023-07-30 00:00:00
when i do
df[start_date] = pd.to_datetime(df[start_date])
some dates have month converted as days.
The format is inconsistent through the column. How to convert properly?
Use dayfirst=True parameter:
df['start_date'] = pd.to_datetime(df['start_date'], dayfirst=True)
Or specify format by http://strftime.org/:
df['start_date'] = pd.to_datetime(df['start_date'], format='%d.%m.%Y')
df['start_date'] = pd.to_datetime(df['start_date'], dayfirst=True)
df['end_date'] = pd.to_datetime(df['end_date'], dayfirst=True)
print (df)
start_date end_date
0 2013-09-03 2025-09-03
1 2019-08-09 2020-05-14
2 2015-08-03 2019-08-03
3 2014-03-31 2019-03-31
4 2015-02-02 2019-02-02
5 2019-08-21 2024-08-21

Is there a way of group by month in Pandas starting at specific day number?

I'm trying to group by month some data in python, but i need the month to start at the 25 of each month, is there a way to do that in Pandas?
For weeks there is a way of starting on Monday, Tuesday, ... But for months it's always full month.
pd.Grouper(key='date', freq='M')
You could offset the dates by 24 days and groupby:
np.random.seed(1)
dates = pd.date_range('2019-01-01', '2019-04-30', freq='D')
df = pd.DataFrame({'date':dates,
'val': np.random.uniform(0,1,len(dates))})
# for groupby
s = df['date'].sub(pd.DateOffset(24))
(df.groupby([s.dt.year, s.dt.month], as_index=False)
.agg({'date':'min', 'val':'sum'})
)
gives
date val
0 2019-01-01 10.120368
1 2019-01-25 14.895363
2 2019-02-25 14.544506
3 2019-03-25 17.228734
4 2019-04-25 3.334160
Another example:
np.random.seed(1)
dates = pd.date_range('2019-01-20', '2019-01-30', freq='D')
df = pd.DataFrame({'date':dates,
'val': np.random.uniform(0,1,len(dates))})
s = df['date'].sub(pd.DateOffset(24))
df['groups'] = df.groupby([s.dt.year, s.dt.month]).cumcount()
gives
date val groups
0 2019-01-20 0.417022 0
1 2019-01-21 0.720324 1
2 2019-01-22 0.000114 2
3 2019-01-23 0.302333 3
4 2019-01-24 0.146756 4
5 2019-01-25 0.092339 0
6 2019-01-26 0.186260 1
7 2019-01-27 0.345561 2
8 2019-01-28 0.396767 3
9 2019-01-29 0.538817 4
10 2019-01-30 0.419195 5
And you can see the how the cumcount restarts at day 25.
I prepared the following test DataFrame:
Dat Val
0 2017-03-24 0
1 2017-03-25 0
2 2017-03-26 1
3 2017-03-27 0
4 2017-04-24 0
5 2017-04-25 0
6 2017-05-24 0
7 2017-05-25 2
8 2017-05-26 0
The first step is to compute a "shifted date" column:
df['Dat2'] = df.Dat + pd.DateOffset(days=-24)
The result is:
Dat Val Dat2
0 2017-03-24 0 2017-02-28
1 2017-03-25 0 2017-03-01
2 2017-03-26 1 2017-03-02
3 2017-03-27 0 2017-03-03
4 2017-04-24 0 2017-03-31
5 2017-04-25 0 2017-04-01
6 2017-05-24 0 2017-04-30
7 2017-05-25 2 2017-05-01
8 2017-05-26 0 2017-05-02
As you can see, March dates in Dat2 start just from original date 2017-03-25,
and so on.
The value of 1 is in March (Dat2) and the value of 2 is in May (also Dat2).
Then, to compute e.g. a sum by month, we can run:
df.groupby(pd.Grouper(key='Dat2', freq='MS')).sum()
getting:
Val
Dat2
2017-02-01 0
2017-03-01 1
2017-04-01 0
2017-05-01 2
So we have correct groupping:
1 is in March,
2 is in May.
The advantage over the other answer is that you have all dates on the first
day of a month, of course bearing in mind that e.g. 2017-03-01 in the
result means the period from 2017-03-25 to 2017-04-24 (including).

populate new rows by comparing two dataframes

I have two dataframe:
df = pd.DataFrame({'ID': ['1','1','1','2','2','3','4','4'], \
'ward': ['icu', 'surgery','icu', 'neurology','neurology','obstetrics','OPD', 'surgery'], \
'start_date': ['2016-10-22 18:19:19', '2016-10-24 10:20:00','2016-10-24 12:41:30', '2016-11-09 19:41:30','2016-11-09 23:20:00','2016-11-08 09:45:00','2016-10-15 09:15:00','2016-10-15 12:15:01'], \
'end_date': ['2016-10-24 10:10:19', '2016-10-24 12:40:30','2016-10-26 11:15:00', '2016-11-09 22:11:00','2016-11-11 13:30:00','2016-11-09 07:25:00','2016-10-15 12:15:00','2016-10-17 17:25:00'] })
df1 = pd.DataFrame({'ID': ['1','2','4'], \
'ward': ['radiology', 'rehabilitation','radiology'], \
'date': ['2016-10-23 10:50:00', '2016-11-24 10:20:00','2016-10-15 18:41:30']})
I want to populate the data shown in df1 into df by comparing the ID and if the date in the df1 falls somewhere between the start_date and end_date of df. If both conditions match, I would like to add another row (data taken from df1) in the df for that specific ID. Where I add the new row, I also would like to change the date/time on the previous and the next row.
What I want is the following as an end result:
ID ward start_date end_date
0 1 icu 2016-10-22 18:19:19 2016-10-23 10:50:00
1 1 radiology 2016-10-23 10:50:00 2016-10-23 10:50:00
2 1 icu 2016-10-23 10:50:00 2016-10-24 10:10:19
3 1 surgery 2016-10-24 10:20:00 2016-10-24 12:40:30
4 1 icu 2016-10-24 12:41:30 2016-10-26 11:15:00
5 2 neurology 2016-11-09 19:41:30 2016-11-09 22:11:00
6 2 neurology 2016-11-09 23:20:00 2016-11-11 13:30:00
7 3 obstetrics 2016-11-08 09:45:00 2016-11-09 07:25:00
8 4 OPD 2016-10-15 09:15:00 2016-10-15 12:15:00
9 4 hematology 2016-10-15 12:15:00 2016-10-15 18:41:30
10 4 radiology 2016-10-15 18:41:30 2016-10-15 18:41:30
11 4 hematology 2016-10-15 18:41:30 2016-10-17 17:25:00
In this example, ID 1 and ID 4 met the condition in both dataframes. Just explaining the example of ID 1, initially ID 1 moved from icu -> surgery -> icu, but after comparing and populating new row, the final data shows that ID 1 moves from icu -> radiology -> icu -> surgery -> icu. now ID 1 has five row instead of 3 and in every row, start_date and end_date is updated as well.
The dataset (df) is large and includes 1 Million rows and I do not know what method should I use to get the right result efficiently. Any help will be appreciated.
By interpretting the guidance from here I have the following method:
import pandas as pd
df = pd.DataFrame({'ID': ['1','1','1','2','2','3','4','4'], \
'ward': ['icu', 'surgery','icu', 'neurology','neurology','obstetrics','OPD', 'surgery'], \
'start_date': ['2016-10-22 18:19:19', '2016-10-24 10:20:00','2016-10-24 12:41:30', '2016-11-09 19:41:30','2016-11-09 23:20:00','2016-11-08 09:45:00','2016-10-15 09:15:00','2016-10-15 12:15:01'], \
'end_date': ['2016-10-24 10:10:19', '2016-10-24 12:40:30','2016-10-26 11:15:00', '2016-11-09 22:11:00','2016-11-11 13:30:00','2016-11-09 07:25:00','2016-10-15 12:15:00','2016-10-17 17:25:00'] })
df1 = pd.DataFrame({'ID': ['1','2','4'], \
'ward': ['radiology', 'rehabilitation','radiology'], \
'date': ['2016-10-23 10:50:00', '2016-11-24 10:20:00','2016-10-15 18:41:30']})
# Converting str datetime to datetime objects
df.start_date = pd.to_datetime(df.start_date)
df.end_date = pd.to_datetime(df.end_date)
df1.date = pd.to_datetime(df1.date)
# Change the index to intervals
df_temp = df.copy()
df_temp.index = pd.IntervalIndex.from_arrays(df_temp['start_date'],df_temp['end_date'],closed='both')
# Find the interval to split
def find_interval(row):
try:
return df_temp.loc[row.date].loc[(df_temp.ID == row.ID)].iloc[0]
except KeyError:
# This value does not fall within any interval in df
return
# These are all the rows to be altered:
to_remove = df1.apply(find_interval, axis=1).dropna()
"""
to_remove
ID ward start_date end_date
0 1 icu 2016-10-22 18:19:19 2016-10-24 10:10:19
2 4 surgery 2016-10-15 12:15:01 2016-10-17 17:25:00 """
# Create 3 new rows for every matching
def new_rows(row):
try:
# Create the new rows by taking information from the existing row
existing = df_temp.loc[row.date].loc[(df_temp.ID == row.ID)].iloc[0]
out = pd.DataFrame(dict(
ID=[row.ID] * 3,
ward=[existing.ward, row.ward, existing.ward],
start_date=[existing.start_date, row.date, row.date],
end_date=[row.date, row.date, existing.end_date]
))
return out
except KeyError:
return
to_add = pd.concat(df1.apply(new_rows, axis=1).values)
"""
to_add
ID ward start_date end_date
0 1 icu 2016-10-22 18:19:19 2016-10-23 10:50:00
1 1 radiology 2016-10-23 10:50:00 2016-10-23 10:50:00
2 1 icu 2016-10-23 10:50:00 2016-10-24 10:10:19
0 4 surgery 2016-10-15 12:15:01 2016-10-15 18:41:30
1 4 radiology 2016-10-15 18:41:30 2016-10-15 18:41:30
2 4 surgery 2016-10-15 18:41:30 2016-10-17 17:25:00 """
# Remove the 'to_remove'
new = pd.concat([df,to_remove]).drop_duplicates(keep=False)
# Add the 'to_add'
new = pd.concat([new, to_add])
# Sort the finished dataframe
new = new.sort_values(['ID', 'start_date']).reset_index(drop=True)
new
ID ward start_date end_date
0 1 icu 2016-10-22 18:19:19 2016-10-23 10:50:00
1 1 radiology 2016-10-23 10:50:00 2016-10-23 10:50:00
2 1 icu 2016-10-23 10:50:00 2016-10-24 10:10:19
3 1 surgery 2016-10-24 10:20:00 2016-10-24 12:40:30
4 1 icu 2016-10-24 12:41:30 2016-10-26 11:15:00
5 2 neurology 2016-11-09 19:41:30 2016-11-09 22:11:00
6 2 neurology 2016-11-09 23:20:00 2016-11-11 13:30:00
7 3 obstetrics 2016-11-08 09:45:00 2016-11-09 07:25:00
8 4 OPD 2016-10-15 09:15:00 2016-10-15 12:15:00
9 4 surgery 2016-10-15 12:15:01 2016-10-15 18:41:30
10 4 radiology 2016-10-15 18:41:30 2016-10-15 18:41:30
11 4 surgery 2016-10-15 18:41:30 2016-10-17 17:25:00

Filter on Pandas DataFrame with datetime columns raises error

I'm setting up a DataFrame with two datetime columns like so:
range1 = Series(date_range('1/1/2011', periods=50, freq='D'))
range2 = Series(date_range('2/5/2011', periods=50, freq='D'))
df1 = DataFrame({'a': rng1, 'b': rng2}, dtype='datetime64[D]')
Oddly, asking the dtypes of df1 gives me:
In [71]: df1.dtypes
Out[71]:
a datetime64[ns]
b datetime64[ns]
What is worse, when I try to filter the dataframe like so:
In [62]:
d = datetime(2011,1,14)
df1[df1 > d]
I get an error:
TypeError Traceback (most recent call last)
<ipython-input-62-50b4b9735157> in <module>()
1 d = datetime(2011,1,14)
----> 2 df1[df1 > d]
/usr/local/lib/python2.7/site-packages/pandas/core/frame.pyc in f(self, other)
313 return self._combine_series_infer(other, func)
314 else:
--> 315 return self._combine_const(other, func)
316
317 f.__name__ = name
/usr/local/lib/python2.7/site-packages/pandas/core/frame.pyc in _combine_const(self, other, func)
3677 return self
3678
-> 3679 result_values = func(self.values, other)
3680
3681 if not isinstance(result_values, np.ndarray):
TypeError: can't compare datetime.datetime to long
Could anyone tell me why this is happening? I am using numpy 1.7 and pandas 0.10.1.
only datetime64[ns] dtypes are supported, try w/o the dtype
In [9]: df1 = DataFrame({'a': range1, 'b' : range2})
In [10]: df1
In [15]: df1.head()
Out[15]:
a b
0 2011-01-01 00:00:00 2011-02-05 00:00:00
1 2011-01-02 00:00:00 2011-02-06 00:00:00
2 2011-01-03 00:00:00 2011-02-07 00:00:00
3 2011-01-04 00:00:00 2011-02-08 00:00:00
4 2011-01-05 00:00:00 2011-02-09 00:00:00
In [16]: df1[df1.a>datetime.datetime(2011,1,14)].head()
Out[16]:
a b
14 2011-01-15 00:00:00 2011-02-19 00:00:00
15 2011-01-16 00:00:00 2011-02-20 00:00:00
16 2011-01-17 00:00:00 2011-02-21 00:00:00
17 2011-01-18 00:00:00 2011-02-22 00:00:00
18 2011-01-19 00:00:00 2011-02-23 00:00:00
FYI, after this: https://github.com/pydata/pandas/issues/3311 is merged in,
then the operation the OP indicated, a where returns this:
In [15]: df1[df1>datetime.datetime(2011,1,14)].head(20)
Out[15]:
a b
0 NaT 2011-02-05 00:00:00
1 NaT 2011-02-06 00:00:00
2 NaT 2011-02-07 00:00:00
3 NaT 2011-02-08 00:00:00
4 NaT 2011-02-09 00:00:00
5 NaT 2011-02-10 00:00:00
6 NaT 2011-02-11 00:00:00
7 NaT 2011-02-12 00:00:00
8 NaT 2011-02-13 00:00:00
9 NaT 2011-02-14 00:00:00
10 NaT 2011-02-15 00:00:00
11 NaT 2011-02-16 00:00:00
12 NaT 2011-02-17 00:00:00
13 NaT 2011-02-18 00:00:00
14 2011-01-15 00:00:00 2011-02-19 00:00:00
15 2011-01-16 00:00:00 2011-02-20 00:00:00
16 2011-01-17 00:00:00 2011-02-21 00:00:00
17 2011-01-18 00:00:00 2011-02-22 00:00:00
18 2011-01-19 00:00:00 2011-02-23 00:00:00
19 2011-01-20 00:00:00 2011-02-24 00:00:00