How can I merge Tensorflow Dataset columns? - tensorflow

I have a Keras model that takes an input layer with shape (n, 288, 1), of which 288 is the number of features. I am using a TensorFlow dataset tf.data.experimental.make_batched_features_dataset and my input layer will be (n, 1, 1) which means it gives one feature to the model at a time. How can I make an input tensor with the shape of (n, 288, 1)? I mean how can I use all my features in one tensor?

You can specify the shape of your input in the Keras input layer. Here an example code demonstrating with dummy data demonstrating the same.
import tensorflow as tf
## Creating dummy data for demo
def make_sample():
return tf.random.normal([288, 1])
n_samples = 100
samples = [make_sample() for _ in range(n_samples)]
labels = [tf.random.uniform([1]) for _ in range(n_samples)]
# Use tf.data to create dataset
batch_size = 4
dataset = tf.data.Dataset.from_tensor_slices((samples, labels))
dataset = dataset.batch(batch_size)
# Build keras function model
inputs = tf.keras.Input(shape=[288, 1], name='input')
x = tf.keras.layers.Dense(1)(inputs)
model = tf.keras.Model(inputs=[inputs], outputs=[x])
# Compile loss and optimizer
model.compile(loss='mse', optimizer='sgd', metrics=['mae'])
model.fit(dataset, epochs=1)

Related

No gradients provided for any variable with random data and proper model construction

import tensorflow as tf
length = 500
data = tf.transpose([range(length),
tf.random.uniform([length], minval=0, maxval=2, dtype=tf.int32)])
dataset = tf.data.Dataset.from_tensor_slices(data)
dataset.shuffle(length)
train_length = int(length / 5 * 4)
train_data = dataset.take(train_length)
test_data = dataset.skip(train_length)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(10, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['binary_accuracy'], run_eagerly=True)
model.fit(train_data.batch(10), validation_data=test_data.batch(10), epochs=10)
Why does it throw error
ValueError: No gradients provided for any variable: ['dense/kernel:0', 'dense/bias:0', 'dense_1/kernel:0', 'dense_1/bias:0'].
I just want to use some random data to train the model in order to learn tensorflow. How do I fix the code?
Dataset shape is incorrect in the OP's code. I will suggest to add the following check before model.fit
assert isinstance(train_data.element_spec, tuple) and len(train_data.element_spec) > 0, \
'When x is dataset, its members must be a tuple of either (inputs, targets) or (inputs, targets, sample_weights). Currently your tuple size is 0.'
Your code fails with the assert because the examples in your dataset is one element instead of two.
The minimal change is to create dataset like this
dataset = tf.data.Dataset.from_tensor_slices((features, labels))

How to apply Triplet Loss for a ResNet50 based Siamese Network in Keras or Tf 2

I have a ResNet based siamese network which uses the idea that you try to minimize the l-2 distance between 2 images and then apply a sigmoid so that it gives you {0:'same',1:'different'} output and based on how far the prediction is, you just flow the gradients back to network but there is a problem that updation of gradients is too little as we're changing the distance between {0,1} so I thought of using the same architecture but based on Triplet Loss.
I1 = Input(shape=image_shape)
I2 = Input(shape=image_shape)
res_m_1 = ResNet50(include_top=False, weights='imagenet', input_tensor=I1, pooling='avg')
res_m_2 = ResNet50(include_top=False, weights='imagenet', input_tensor=I2, pooling='avg')
x1 = res_m_1.output
x2 = res_m_2.output
# x = Flatten()(x) or use this one if not using any pooling layer
distance = Lambda( lambda tensors : K.abs( tensors[0] - tensors[1] )) ([x1,x2] )
final_output = Dense(1,activation='sigmoid')(distance)
siamese_model = Model(inputs=[I1,I2], outputs=final_output)
siamese_model.compile(loss='binary_crossentropy',optimizer=Adam(),metrics['acc'])
siamese_model.fit_generator(train_gen,steps_per_epoch=1000,epochs=10,validation_data=validation_data)
So how can I change it to use the Triplet Loss function? What adjustments should be done here in order to get this done? One change will be that I'll have to calculate
res_m_3 = ResNet50(include_top=False, weights='imagenet', input_tensor=I2, pooling='avg')
x3 = res_m_3.output
One thing found in tf docs is triplet-semi-hard-loss and is given as:
tfa.losses.TripletSemiHardLoss()
As shown in the paper, the best results are from triplets known as "Semi-Hard". These are defined as triplets where the negative is farther from the anchor than the positive, but still produces a positive loss. To efficiently find these triplets we utilize online learning and only train from the Semi-Hard examples in each batch.
Another implementation of Triplet Loss which I found on Kaggle is: Triplet Loss Keras
Which one should I use and most importantly, HOW?
P.S: People also use something like: x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x) after model.output. Why is that? What is this doing?
Following this answer of mine, and with role of TripletSemiHardLoss in mind, we could do following:
import tensorflow as tf
import tensorflow_addons as tfa
import tensorflow_datasets as tfds
from tensorflow.keras import models, layers
BATCH_SIZE = 32
LATENT_DEM = 128
def _normalize_img(img, label):
img = tf.cast(img, tf.float32) / 255.
return (img, label)
train_dataset, test_dataset = tfds.load(name="mnist", split=['train', 'test'], as_supervised=True)
# Build your input pipelines
train_dataset = train_dataset.shuffle(1024).batch(BATCH_SIZE)
train_dataset = train_dataset.map(_normalize_img)
test_dataset = test_dataset.batch(BATCH_SIZE)
test_dataset = test_dataset.map(_normalize_img)
inputs = layers.Input(shape=(28, 28, 1))
resNet50 = tf.keras.applications.ResNet50(include_top=False, weights=None, input_tensor=inputs, pooling='avg')
outputs = layers.Dense(LATENT_DEM, activation=None)(resNet50.output) # No activation on final dense layer
outputs = layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1))(outputs) # L2 normalize embedding
siamese_model = models.Model(inputs=inputs, outputs=outputs)
# Compile the model
siamese_model.compile(
optimizer=tf.keras.optimizers.Adam(0.001),
loss=tfa.losses.TripletSemiHardLoss())
# Train the network
history = siamese_model.fit(
train_dataset,
epochs=3)

How to use TimeDistributed layer for predicting sequences of dynamic length? PYTHON 3

So I am trying to build an LSTM based autoencoder, which I want to use for the time series data. These are spitted up to sequences of different lengths. Input to the model has thus shape [None, None, n_features], where the first None stands for number of samples and the second for time_steps of the sequence. The sequences are processed by LSTM with argument return_sequences = False, coded dimension is then recreated by function RepeatVector and ran through LSTM again. In the end I would like to use the TimeDistributed layer, but how to tell python that the time_steps dimension is dynamic? See my code:
from keras import backend as K
.... other dependencies .....
input_ae = Input(shape=(None, 2)) # shape: time_steps, n_features
LSTM1 = LSTM(units=128, return_sequences=False)(input_ae)
code = RepeatVector(n=K.shape(input_ae)[1])(LSTM1) # bottleneck layer
LSTM2 = LSTM(units=128, return_sequences=True)(code)
output = TimeDistributed(Dense(units=2))(LSTM2) # ??????? HOW TO ????
# no problem here so far:
model = Model(input_ae, outputs=output)
model.compile(optimizer='adam', loss='mse')
this function seems to do the trick
def repeat(x_inp):
x, inp = x_inp
x = tf.expand_dims(x, 1)
x = tf.repeat(x, [tf.shape(inp)[1]], axis=1)
return x
example
input_ae = Input(shape=(None, 2))
LSTM1 = LSTM(units=128, return_sequences=False)(input_ae)
code = Lambda(repeat)([LSTM1, input_ae])
LSTM2 = LSTM(units=128, return_sequences=True)(code)
output = TimeDistributed(Dense(units=2))(LSTM2)
model = Model(input_ae, output)
model.compile(optimizer='adam', loss='mse')
X = np.random.uniform(0,1, (100,30,2))
model.fit(X, X, epochs=5)
I'm using tf.keras with TF 2.2

Add tf.image.decode_jpeg to Keras created graph

I would like to try to use Keras Sequential model in order to train a convnet on an image classification problem.
My training set is 18K images 455x255 which is probably too big to fit into memory and so I would like to use some kind of a batch pipeline.
In my original tensorflow implementation I have this code which is simlar to the MNIST tensorflow example
How can I feed this pipeline into the Sequential model, to create something like the Keras cifa10_cnn example
with tf.name_scope('input'):
# Input data
images_initializer = tf.placeholder(
dtype=tf.string,
shape=[len_all_filepaths])
labels_initializer = tf.placeholder(
dtype=tf.int32,
shape=[len_all_filepaths])
input_images = tf.Variable(
images_initializer, trainable=False, collections=[])
input_labels = tf.Variable(
labels_initializer, trainable=False, collections=[])
image, label = tf.train.slice_input_producer(
[input_images, input_labels], num_epochs=FLAGS.num_epochs)
# process path and string tensor into an image and a label
file_contents = tf.read_file(image)
image_contents = tf.image.decode_jpeg(file_contents, channels=NUM_CHANNELS)
image_contents.set_shape([None, None, NUM_CHANNELS])
# Rotate if necessary
rotated_image_contents, = tf.py_func(rotate, [image_contents], [tf.uint8])
rotated_image_contents.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])
rotated_image_contents = tf.image.per_image_whitening(rotated_image_contents)
images, labels = tf.train.batch(
[rotated_image_contents, label],
batch_size=FLAGS.batch_size,
num_threads=16,
capacity=3 * FLAGS.batch_size
)
# Build a Graph that computes predictions from the inference model.
logits = model.inference(images, len(correct_labels))
# Add to the Graph the Ops for loss calculation.
loss = model.loss(logits, labels)
# Add to the Graph the Ops that calculate and apply gradients.
train_op = model.training(loss, FLAGS.learning_rate)
...
I think the ImageDataGenerator from Keras already does batching for you. I don't understand why the Keras datagen.fit() with a specified batch size and a standard generator doesn't work for your use case.

how to stack LSTM layers using TensorFlow

what I have is the following, which I believe is a network with one hidden LSTM layer:
# Parameters
learning rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10
# Network Parameters
n_input = 13
n_steps = 10
n_hidden = 512
n_classes = 13
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {
'out' : tf.Variable(tf.random_normal([n_hidden, n_classes]))
}
biases = {
'out' : tf.Variable(tf.random_normal([n_classes]))
}
However, I am trying to build an LSTM network using TensorFlow to predict power consumption. I have been looking around to find a good example, but I could not find any model with 2 hidden LSTM layers. Here's the model that I would like to build:
1 input layer,
1 output layer,
2 hidden LSTM layers(with 512 neurons in each),
time step(sequence length): 10
Could anyone guide me to build this using TensorFlow? ( from defining weights, building input shape, training, predicting, use of optimizer or cost function, etc), any help would be much appreciated.
Thank you so much in advance!
Here is how I do it in a translation model with GRU cells. You can just replace the GRU with an LSTM. It is really easy just use tf.nn.rnn_cell.MultiRNNCell with a list of the multiple cells it should wrap. In the code bellow I am manually unrolling it but you can pass it to tf.nn.dynamic_rnn or tf.nn.rnn as well.
y = input_tensor
with tf.variable_scope('encoder') as scope:
rnn_cell = rnn.MultiRNNCell([rnn.GRUCell(1024) for _ in range(3)])
state = tf.zeros((BATCH_SIZE, rnn_cell.state_size))
output = [None] * TIME_STEPS
for t in reversed(range(TIME_STEPS)):
y_t = tf.reshape(y[:, t, :], (BATCH_SIZE, -1))
output[t], state = rnn_cell(y_t, state)
scope.reuse_variables()
y = tf.pack(output, 1)
First you need some placeholders to put your training data (one batch)
x_input = tf.placeholder(tf.float32, [batch_size, truncated_series_length, 1])
y_output = tf.placeholder(tf.float32, [batch_size, truncated_series_length, 1])
A LSTM need a state, which consists of two components, the hidden state and the cell state, very good guide here: https://arxiv.org/pdf/1506.00019.pdf. For every layer in the LSTM you have one cell state and one hidden state.
The problem is that Tensorflow stores this in a LSTMStateTuple which you can not send into placeholder. So you need to store it in a Tensor, and then unpack it into a tuple:
state_placeholder = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size])
l = tf.unpack(state_placeholder, axis=0)
rnn_tuple_state = tuple(
[tf.nn.rnn_cell.LSTMStateTuple(l[idx][0], l[idx][1])
for idx in range(num_layers)]
)
Then you can use the built-in Tensorflow API to create the stacked LSTM layer.
cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True)
cell = tf.nn.rnn_cell.MultiRNNCell([cell]*num_layers, state_is_tuple=True)
outputs, state = tf.nn.dynamic_rnn(cell, x_input, initial_state=rnn_tuple_state)
From here you continue with the outputs to calculate logits and then a loss with respect to the y_inputs.
Then you run each batch with the sess.run-command, with truncated backpropagation (good explanation here http://r2rt.com/styles-of-truncated-backpropagation.html)
init_state = np.zeros((num_layers, 2, batch_size, state_size))
...current_state... = sess.run([...state...], feed_dict={x_input:batch_in, state_placeholder:current_state ...})
current_state = np.array(current_state)
You will have to convert the state to a numpy array before feeding it again.
Perhaps it is better to use a librarly like Tflearn or Keras instead?