most efficient way to set dataframe column indexing to other columns - pandas

I have a large Dataframe. One of my columns contains the name of others. I want to eval this colum and set in each row the value of the referenced column:
|A|B|C|Column|
|:|:|:|:-----|
|1|3|4| B |
|2|5|3| A |
|3|5|9| C |
Desired output:
|A|B|C|Column|
|:|:|:|:-----|
|1|3|4| 3 |
|2|5|3| 2 |
|3|5|9| 9 |
I am achieving this result using:
df.apply(lambda d: eval("d." + d['Column']), axis=1)
But it is very slow, even using swifter. Is there a more efficient way of performing this?

For better performance, use df.to_numpy():
In [365]: df['Column'] = df.to_numpy()[df.index, df.columns.get_indexer(df.Column)]
In [366]: df
Out[366]:
A B C Column
0 1 3 4 3
1 2 5 3 2
2 3 5 9 9

For Pandas < 1.2.0, use lookup:
df['Column'] = df.lookup(df.index, df['Column'])
From 1.2.0+, lookup is decprecated, you can just use a for loop:
df['Column'] = [df.at[idx, r['Column']] for idx, r in df.iterrows()]
Output:
A B C Column
0 1 3 4 3
1 2 5 3 2
2 3 5 9 9

Since lookup is going to decprecated try numpy method with get_indexer
df['new'] = df.values[df.index,df.columns.get_indexer(df.Column)]
df
Out[75]:
A B C Column new
0 1 3 4 B 3
1 2 5 3 A 2
2 3 5 9 C 9

Related

Merge and inverleave rows of two dataframes [duplicate]

This question already has answers here:
Pandas - Interleave / Zip two DataFrames by row
(5 answers)
Closed 20 days ago.
This post was edited and submitted for review 20 days ago.
Suppose we have:
>>> df1
A B
0 1 a
1 2 a
2 3 a
3 4 a
>>> df2
A B
0 1 b
1 2 b
2 3 b
3 5 b
I would like to merge them on "A" and then list them by interleaving rows like:
A B
0 1 a
0 1 b
1 2 a
1 2 b
2 3 a
2 3 b
I tried merge but it list them column by column. For example if I have 3 or more data frames, merge can merge them on some columns, but my problem would be then to interleave them
If need match by A filter rows by Series.isin in boolean indexing, pass to concat with DataFrame.sort_index:
df = pd.concat([df1[df1.A.isin(df2.A)],
df2[df2.A.isin(df1.A)]]).sort_index(kind='stable')
print (df)
A B
0 1 a
0 1 b
1 2 a
1 2 b
2 3 a
2 3 b
EDIT:
For general data is possible sorting by A and create default index for correct interleaving:
df = (pd.concat([df1[df1.A.isin(df2.A)].sort_values('A', kind='stable').reset_index(drop=True),
df2[df2.A.isin(df1.A)].sort_values('A', kind='stable').reset_index(drop=True)])
.sort_index(kind='stable'))

Python: obtaining the first observation according to its date [duplicate]

I have a DataFrame with columns A, B, and C. For each value of A, I would like to select the row with the minimum value in column B.
That is, from this:
df = pd.DataFrame({'A': [1, 1, 1, 2, 2, 2],
'B': [4, 5, 2, 7, 4, 6],
'C': [3, 4, 10, 2, 4, 6]})
A B C
0 1 4 3
1 1 5 4
2 1 2 10
3 2 7 2
4 2 4 4
5 2 6 6
I would like to get:
A B C
0 1 2 10
1 2 4 4
For the moment I am grouping by column A, then creating a value that indicates to me the rows I will keep:
a = data.groupby('A').min()
a['A'] = a.index
to_keep = [str(x[0]) + str(x[1]) for x in a[['A', 'B']].values]
data['id'] = data['A'].astype(str) + data['B'].astype('str')
data[data['id'].isin(to_keep)]
I am sure that there is a much more straightforward way to do this.
I have seen many answers here that use MultiIndex, which I would prefer to avoid.
Thank you for your help.
I feel like you're overthinking this. Just use groupby and idxmin:
df.loc[df.groupby('A').B.idxmin()]
A B C
2 1 2 10
4 2 4 4
df.loc[df.groupby('A').B.idxmin()].reset_index(drop=True)
A B C
0 1 2 10
1 2 4 4
Had a similar situation but with a more complex column heading (e.g. "B val") in which case this is needed:
df.loc[df.groupby('A')['B val'].idxmin()]
The accepted answer (suggesting idxmin) cannot be used with the pipe pattern. A pipe-friendly alternative is to first sort values and then use groupby with DataFrame.head:
data.sort_values('B').groupby('A').apply(DataFrame.head, n=1)
This is possible because by default groupby preserves the order of rows within each group, which is stable and documented behaviour (see pandas.DataFrame.groupby).
This approach has additional benefits:
it can be easily expanded to select n rows with smallest values in specific column
it can break ties by providing another column (as a list) to .sort_values(), e.g.:
data.sort_values(['final_score', 'midterm_score']).groupby('year').apply(DataFrame.head, n=1)
As with other answers, to exactly match the result desired in the question .reset_index(drop=True) is needed, making the final snippet:
df.sort_values('B').groupby('A').apply(DataFrame.head, n=1).reset_index(drop=True)
I found an answer a little bit more wordy, but a lot more efficient:
This is the example dataset:
data = pd.DataFrame({'A': [1,1,1,2,2,2], 'B':[4,5,2,7,4,6], 'C':[3,4,10,2,4,6]})
data
Out:
A B C
0 1 4 3
1 1 5 4
2 1 2 10
3 2 7 2
4 2 4 4
5 2 6 6
First we will get the min values on a Series from a groupby operation:
min_value = data.groupby('A').B.min()
min_value
Out:
A
1 2
2 4
Name: B, dtype: int64
Then, we merge this series result on the original data frame
data = data.merge(min_value, on='A',suffixes=('', '_min'))
data
Out:
A B C B_min
0 1 4 3 2
1 1 5 4 2
2 1 2 10 2
3 2 7 2 4
4 2 4 4 4
5 2 6 6 4
Finally, we get only the lines where B is equal to B_min and drop B_min since we don't need it anymore.
data = data[data.B==data.B_min].drop('B_min', axis=1)
data
Out:
A B C
2 1 2 10
4 2 4 4
I have tested it on very large datasets and this was the only way I could make it work in a reasonable time.
You can sort_values and drop_duplicates:
df.sort_values('B').drop_duplicates('A')
Output:
A B C
2 1 2 10
4 2 4 4
The solution is, as written before ;
df.loc[df.groupby('A')['B'].idxmin()]
If the solution but then if you get an error;
"Passing list-likes to .loc or [] with any missing labels is no longer supported.
The following labels were missing: Float64Index([nan], dtype='float64').
See https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike"
In my case, there were 'NaN' values at column B. So, I used 'dropna()' then it worked.
df.loc[df.groupby('A')['B'].idxmin().dropna()]
You can also boolean indexing the rows where B column is minimal value
out = df[df['B'] == df.groupby('A')['B'].transform('min')]
print(out)
A B C
2 1 2 10
4 2 4 4

Append new column to DF after sum?

I have a sample dataframe below:
sn C1-1 C1-2 C1-3 H2-1 H2-2 K3-1 K3-2
1 4 3 5 4 1 4 2
2 2 2 0 2 0 1 2
3 1 2 0 0 2 1 2
I will like to sum based on the prefix of C1, H2, K3 and output three new columns with the total sum. The final result is this:
sn total_c1 total_h2 total_k3
1 12 5 6
2 4 2 3
3 3 2 3
What I have tried on my original df:
lst = ["C1", "H2", "K3"]
lst2 = ["total_c1", "total_h2", "total_k3"]
for k in lst:
idx = df.columns.str.startswith(i)
for j in lst2:
df[j] = df.iloc[:,idx].sum(axis=1)
df1 = df.append(df, sort=False)
But I kept getting error
IndexError: Item wrong length 35 instead of 36.
I can't figure out how to append the new total column to produce my end result in the loop.
Any help will be appreciated (or better suggestion as oppose to loop). Thank you.
You can use groupby:
# columns of interest
cols = df.columns[1:]
col_groups = cols.str.split('-').str[0]
out_df = df[['sn']].join(df[cols].groupby(col_groups, axis=1)
.sum()
.add_prefix('total_')
)
Output:
sn total_C1 total_H2 total_K3
0 1 12 5 6
1 2 4 2 3
2 3 3 2 3
Let us try ,split then groupby with it with axis=1
out = df.groupby(df.columns.str.split('-').str[0],axis=1).sum().set_index('sn').add_prefix('Total_').reset_index()
Out[84]:
sn Total_C1 Total_H2 Total_K3
0 1 12 5 6
1 2 4 2 3
2 3 3 2 3
Another option, where we create a dictionary to groupby the columns:
mapping = {entry: f"total_{entry[:2]}" for entry in df.columns[1:]}
result = df.groupby(mapping, axis=1).sum()
result.insert(0, "sn", df.sn)
result
sn total_C1 total_H2 total_K3
0 1 12 5 6
1 2 4 2 3
2 3 3 2 3

Pandas: keep the first three rows containing a value for each unique value [duplicate]

Suppose I have pandas DataFrame like this:
df = pd.DataFrame({'id':[1,1,1,2,2,2,2,3,4], 'value':[1,2,3,1,2,3,4,1,1]})
which looks like:
id value
0 1 1
1 1 2
2 1 3
3 2 1
4 2 2
5 2 3
6 2 4
7 3 1
8 4 1
I want to get a new DataFrame with top 2 records for each id, like this:
id value
0 1 1
1 1 2
3 2 1
4 2 2
7 3 1
8 4 1
I can do it with numbering records within group after groupby:
dfN = df.groupby('id').apply(lambda x:x['value'].reset_index()).reset_index()
which looks like:
id level_1 index value
0 1 0 0 1
1 1 1 1 2
2 1 2 2 3
3 2 0 3 1
4 2 1 4 2
5 2 2 5 3
6 2 3 6 4
7 3 0 7 1
8 4 0 8 1
then for the desired output:
dfN[dfN['level_1'] <= 1][['id', 'value']]
Output:
id value
0 1 1
1 1 2
3 2 1
4 2 2
7 3 1
8 4 1
But is there more effective/elegant approach to do this? And also is there more elegant approach to number records within each group (like SQL window function row_number()).
Did you try
df.groupby('id').head(2)
Output generated:
id value
id
1 0 1 1
1 1 2
2 3 2 1
4 2 2
3 7 3 1
4 8 4 1
(Keep in mind that you might need to order/sort before, depending on your data)
EDIT: As mentioned by the questioner, use
df.groupby('id').head(2).reset_index(drop=True)
to remove the MultiIndex and flatten the results:
id value
0 1 1
1 1 2
2 2 1
3 2 2
4 3 1
5 4 1
Since 0.14.1, you can now do nlargest and nsmallest on a groupby object:
In [23]: df.groupby('id')['value'].nlargest(2)
Out[23]:
id
1 2 3
1 2
2 6 4
5 3
3 7 1
4 8 1
dtype: int64
There's a slight weirdness that you get the original index in there as well, but this might be really useful depending on what your original index was.
If you're not interested in it, you can do .reset_index(level=1, drop=True) to get rid of it altogether.
(Note: From 0.17.1 you'll be able to do this on a DataFrameGroupBy too but for now it only works with Series and SeriesGroupBy.)
Sometimes sorting the whole data ahead is very time consuming.
We can groupby first and doing topk for each group:
g = df.groupby(['id']).apply(lambda x: x.nlargest(topk,['value'])).reset_index(drop=True)
df.groupby('id').apply(lambda x : x.sort_values(by = 'value', ascending = False).head(2).reset_index(drop = True))
Here sort values ascending false gives similar to nlargest and True gives similar to nsmallest.
The value inside the head is the same as the value we give inside nlargest to get the number of values to display for each group.
reset_index is optional and not necessary.
This works for duplicated values
If you have duplicated values in top-n values, and want only unique values, you can do like this:
import pandas as pd
ifile = "https://raw.githubusercontent.com/bhishanpdl/Shared/master/data/twitter_employee.tsv"
df = pd.read_csv(ifile,delimiter='\t')
print(df.query("department == 'Audit'")[['id','first_name','last_name','department','salary']])
id first_name last_name department salary
24 12 Shandler Bing Audit 110000
25 14 Jason Tom Audit 100000
26 16 Celine Anston Audit 100000
27 15 Michale Jackson Audit 70000
If we do not remove duplicates, for the audit department we get top 3 salaries as 110k,100k and 100k.
If we want to have not-duplicated salaries per each department, we can do this:
(df.groupby('department')['salary']
.apply(lambda ser: ser.drop_duplicates().nlargest(3))
.droplevel(level=1)
.sort_index()
.reset_index()
)
This gives
department salary
0 Audit 110000
1 Audit 100000
2 Audit 70000
3 Management 250000
4 Management 200000
5 Management 150000
6 Sales 220000
7 Sales 200000
8 Sales 150000
To get the first N rows of each group, another way is via groupby().nth[:N]. The outcome of this call is the same as groupby().head(N). For example, for the top-2 rows for each id, call:
N = 2
df1 = df.groupby('id', as_index=False).nth[:N]
To get the largest N values of each group, I suggest two approaches.
First sort by "id" and "value" (make sure to sort "id" in ascending order and "value" in descending order by using the ascending parameter appropriately) and then call groupby().nth[].
N = 2
df1 = df.sort_values(by=['id', 'value'], ascending=[True, False])
df1 = df1.groupby('id', as_index=False).nth[:N]
Another approach is to rank the values of each group and filter using these ranks.
# for the entire rows
N = 2
msk = df.groupby('id')['value'].rank(method='first', ascending=False) <= N
df1 = df[msk]
# for specific column rows
df1 = df.loc[msk, 'value']
Both of these are much faster than groupby().apply() and groupby().nlargest() calls as suggested in the other answers on here(1, 2, 3). On a sample with 100k rows and 8000 groups, a %timeit test showed that it was 24-150 times faster than those solutions.
Also, instead of slicing, you can also pass a list/tuple/range to a .nth() call:
df.groupby('id', as_index=False).nth([0,1])
# doesn't even have to be consecutive
# the following returns 1st and 3rd row of each id
df.groupby('id', as_index=False).nth([0,2])

Replace values in pandas dataframe with other on condition

i have a dataframe
id main_value
1 10
2 3
4 1
6 10
i want to change main_value of id = 4,such that it should decrement by 2.
i know a method using .loc
freq = 3
if freq == 3:
df.loc[df.id==4, ['main_value']] = df.main_value.loc[df.id==4] - 2
But this seems very lengthy, is there a better way to do this?
I think you can use:
df.loc[df.id==4, 'main_value'] -= 2
print (df)
id main_value
0 1 10
1 2 3
2 4 -1
3 6 10