Matplotlib inconvenient "reset to original view" while previously zoomed - matplotlib

Updated:
After having zoomed to a region of interest, I would like to add a scatter point without having a reset to the original view.
It occurs when I double click after having zoomed to rectangle.
Of course this is a simplification of a problem encountered as I wanted to add markers to a large image after having properly zoomed to a region of interest.
Any help welcomed
import matplotlib.pyplot as plt
fig, ax = plt.subplots(nrows=1, figsize=(4,4))
plt.plot([0, 1, 2, 3], [10, 20, 30, 40])
def onclick(event):
if event.dblclick:
plt.scatter(event.xdata, event.ydata, c='r')
fig.canvas.mpl_connect('button_press_event', onclick)
plt.get_current_fig_manager().toolbar.zoom()
plt.show()
Answer:
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots(nrows=1, figsize=(4,4))
ax.imshow([[1, 2], [5, 6]])
ax.autoscale(False) # disable autoscaling for all future plotting functions.
def onclick(event):
if event.dblclick:
plt.scatter(event.xdata, event.ydata, c='r')
fig.canvas.mpl_connect('button_press_event', onclick)
plt.get_current_fig_manager().toolbar.zoom()
plt.show()

I believe the problem comes from the autoscale features that kicks in whenever you call plt.scatter(). The solution is simply to disable autoscale (but draw the initial plot beforehand):
import matplotlib.pyplot as plt
fig, ax = plt.subplots(nrows=1, figsize=(4, 4))
plt.plot([0, 1, 2, 3], [10, 20, 30, 40])
fig.canvas.draw() # force draw so that the axes are autoscaled here
ax.autoscale(False) # disable autoscaling for all future plotting functions.
def onclick(event):
if event.inaxes and event.dblclick:
plt.scatter(event.xdata, event.ydata, marker='o', s=10, c='r')
fig.canvas.mpl_connect('button_press_event', onclick)
plt.show()

Related

In matplotlib, how to set ylim independently while setting sharey=True

I want to replicate seaborn pairplot function but I need increased flexibility to plot extra things.
I have the following minimal example, but I need that the uppermost labels show the range [10, 20] instead of [0, 1] without changing the displayed range of the first plot, and that the grid for the right plots shows horizontal bars.
How can I keep x and y shared and displayed for all plots but exclude the y axis of diagonal plots as in seaborn?
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, sharex='col',
sharey='row')
axes[0, 0]._shared_axes['y'].remove(axes[0, 0])
axes[1, 1]._shared_axes['y'].remove(axes[1, 1])
axes[0, 0].plot([0, 1])
axes[0, 1].scatter([0, 1], [10, 20])
axes[1, 0].scatter([0, 1], [100, 200])
axes[1, 1].plot([0, 1])
axes[0, 0].grid(color='lightgray', linestyle='--')
axes[0, 1].grid(color='lightgray', linestyle='--')
axes[1, 0].grid(color='lightgray', linestyle='--')
axes[1, 1].grid(color='lightgray', linestyle='--')
plt.show()
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
df = pd.DataFrame([[10, 100], [20, 200]])
sns.pairplot(df, diag_kind='kde')
plt.show()

PyPlot: hide axes but keep axis labels

I have the following code:
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 4)
for n, ax in enumerate(axs):
ax.plot([1, 2], [1, 2])
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel(n)
plt.show()
...which displays this:
What I want is to hide the black boxes but keep the labels. I've tried adding ax.set_axis_off() but that removes the labels as well:
How can I do this?
Just change the color of spines to None:
fig, axs = plt.subplots(1, 4)
for n, ax in enumerate(axs):
ax.plot([1, 2], [1, 2])
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlabel(n)
plt.setp(ax.spines.values(), color=None)
plt.show()

Three plot in one figure using Matplotlib

I want my plot to look like the image below, how can I achieve that using Matplotlib?
And thanks
You can use GridSpec similar to this tutorial. Possibly there will be not enough space for the y tick labels, which can be mitigated by increasing the default wspace.
import matplotlib.pyplot as plt
fig, axs = plt.subplots(ncols=4, nrows=2, figsize=(12, 7), gridspec_kw={'wspace': 0.4})
gs = axs[0, 0].get_gridspec()
for ax in axs.ravel():
ax.remove()
ax1 = fig.add_subplot(gs[0, :2])
ax1.set_ylabel('A')
ax2 = fig.add_subplot(gs[0, 2:])
ax2.set_ylabel('B')
ax3 = fig.add_subplot(gs[1, 1:3])
ax3.set_ylabel('C')
for ax in (ax1, ax2, ax3):
ax.set_xlabel('D')
ax.legend(handles=[], title='legend', loc='upper right', frameon=False)
plt.show()

Drawing a righthand coordinate system in mplot3d

I want to create plots from Python of 3D coordinate transformations. For example, I want to create the following image (generated statically by TikZ):
A bit of searching led me to the following program:
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
class Arrow3D(FancyArrowPatch):
def __init__(self, xs, ys, zs, *args, **kwargs):
FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs)
self._verts3d = xs, ys, zs
def draw(self, renderer):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
self.set_positions((xs[0], ys[0]), (xs[1], ys[1]))
FancyArrowPatch.draw(self, renderer)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
arrow_prop_dict = dict(mutation_scale=20, arrowstyle='->', shrinkA=0, shrinkB=0)
a = Arrow3D([0, 1], [0, 0], [0, 0], **arrow_prop_dict, color='r')
ax.add_artist(a)
a = Arrow3D([0, 0], [0, 1], [0, 0], **arrow_prop_dict, color='b')
ax.add_artist(a)
a = Arrow3D([0, 0], [0, 0], [0, 1], **arrow_prop_dict, color='g')
ax.add_artist(a)
ax.text(0.0, 0.0, -0.1, r'$o$')
ax.text(1.1, 0, 0, r'$x$')
ax.text(0, 1.1, 0, r'$y$')
ax.text(0, 0, 1.1, r'$z$')
ax.view_init(azim=-90, elev=90)
ax.set_axis_off()
plt.show()
The result doesn't look like what one normally sees in books:
Furthermore, when I include the axes, the origin is not at the intersection of the three planes, which is where I expect it to be.
You may change the view of your 3D axes by changing the following line :
ax.view_init(azim=-90, elev=90)
to
ax.view_init(azim=20, elev=10)
to reproduce your TikZ plot, or change the view angles to any other values as you prefer.

Label is Missing from matplotlib legend

I'm plotting subplots with matplotlib and the legend does not show up for some plots.
In this example, the scatter plot legend does not show up.
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.legend_handler import HandlerLine2D
from matplotlib.patches import Rectangle, Circle
fig = plt.figure()
plt.cla()
plt.clf()
x = np.arange(5) + 1
y = np.full(5, 10)
fig, subplots = plt.subplots(2, sharex=False, sharey=False)
subplots[0].bar(x, y, color='r', alpha=0.5, label='a')
scat = subplots[0].scatter(x, y-1, color='g', label='c')
subplots[0].set_yscale('log')
subplots[1].bar(x, y, color='r', alpha=0.5, label='a')
x = [2, 3]
y = [4, 4]
subplots[1].bar(x, y, color='b', alpha=1, label='b')
subplots[1].set_yscale('log')
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), handler_map={scat: HandlerLine2D(numpoints=4)})
plt.show()
Here is what I tried as a workaround:
p1 = Rectangle((0, 0), 1, 1, fc="r", alpha=0.5)
p2 = Rectangle((0, 0), 1, 1, fc="b")
p3 = Circle((0, 0), 1, fc="g")
legend([p1, p2, p3], ['a', 'b', 'c'], loc='center left', bbox_to_anchor=(1, 0.5))
I really prefer to fix this without the workaround so if anyone knows how to fix it please let me know.
Also, an issue with the workaround is that the Circle object still appears as a bar on the legend.
plt.legend starts with a gca() (which returns the current axes):
# from pyplot.py:
def legend(*args, **kwargs):
ret = gca().legend(*args, **kwargs)
So calling plt.legend will only get you a legend on your last subplot. But it is also possible to call e.g. ax.legend(), or in your case subplots[0].legend(). Adding that to the end of your code gives me a legend for both subplots.
Sample:
for subplot in subplots:
subplot.legend(loc='center left', bbox_to_anchor=(1, 0.5))