I am applying quantization to a SSD model. The gist is attached. There is a custom object called "AnchorBoxes" which is added while loading the model. This works fine when I don't do quantization. But when I apply quantization, this custom object is not recognized.
I tried a work around.
def apply_quantization_to_conv2D(layer):
#print(layer)
if isinstance(layer, tf.keras.layers.Conv2D):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
# Use `tf.keras.models.clone_model` to apply `apply_quantization_to_dense`
# to the layers of the model.
annotated_model = tf.keras.models.clone_model(
model,
clone_function=apply_quantization_to_conv2D,
)
#annotated_model.save('quantize_ready_model_20_01_Conv2D.h5', include_optimizer=True)
annotated_model.summary()
# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
#quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
I commented this line quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model) in the above code as it was throwing the error ValueError: Unknown layer: AnchorBoxes
Instead I saved the model after applying quantization to the Conv2D layers as below
def apply_quantization_to_conv2D(layer):
#print(layer)
if isinstance(layer, tf.keras.layers.Conv2D):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
# Use `tf.keras.models.clone_model` to apply `apply_quantization_to_dense`
# to the layers of the model.
annotated_model = tf.keras.models.clone_model(
model,
clone_function=apply_quantization_to_conv2D,
)
annotated_model.summary()
annotated_model.save('quantize_ready_model_20_01_Conv2D_1.h5', include_optimizer=True)
# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
#quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
#quant_aware_model.compile(optimizer=adam, loss=ssd_loss.compute_loss)
#quant_aware_model.summary()
Then I loaded the model hoping that the loaded quantized model as below will have the custom_objects attached to it.
with tfmot.quantization.keras.quantize_scope():
loaded_model = tf.keras.models.load_model('./quantize_ready_model_20_01_Conv2D_1.h5', custom_objects={'AnchorBoxes': AnchorBoxes})
Finally I applied the quantize_apply to the new loaded_model which has quantized layers.
quant_aware_model = tfmot.quantization.keras.quantize_apply(loaded_model)
which again resulted in the same error
ValueError: Unknown layer: AnchorBoxes
System information
TensorFlow version (installed from source or binary): TF 2.0.0
TensorFlow Model Optimization version (installed from source or binary): 0.5.0
Describe the expected behavior
When I run quantize_apply(model), the model should become quantization aware
Describe the current behavior
Throwing an error on the custom objects
Code to reproduce the issue
gist
The issue was fixed after passing the custom layer like this AnchorBoxes': AnchorBoxes in the below code.
with quantize_scope(
{'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,
'AnchorBoxes': AnchorBoxes}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
Related
I've been trying to follow this process to run an object detector (SSD MobileNet) on the Google Coral Edge TPU:
Edge TPU model workflow
I've successfully trained and evaluated my model with the Object Detection API. I have the model both in checkpoint format as well as tf SavedModel format. As per the documentation, the next step is to convert to .tflite format using post-training quantization.
I am to attempting to follow this example. The export_tflite_graph_tf2.py script and the conversion code that comes after run without errors, but I see some weird behavior when I try to actually use the model to run inference.
I am unable to use the saved_model generated by export_tflite_graph_tf2.py. When running the following code, I get an error:
print('loading model...')
model = tf.saved_model.load(tflite_base)
print('model loaded!')
results = model(image_np)
TypeError: '_UserObject' object is not callable --> results = model(image_np)
As a result, I have no way to tell if the script broke my model or not before I even convert it to tflite. Why would model not be callable in this way? I have even verified that the type returned by tf.saved_model.load() is the same when I pass in a saved_model before it went through the export_tflite_graph_tf2.py script and after. The only possible explanation I can think of is that the script alters the object in some way that causes it to break.
I convert to tflite with post-training quantization with the following code:
def representative_data_gen():
dataset_list = tf.data.Dataset.list_files(images_dir + '/*')
for i in range(100):
image = next(iter(dataset_list))
image = tf.io.read_file(image)
# supports PNG as well
image = tf.io.decode_image(image, channels=3)
image = tf.image.resize(image, [IMAGE_SIZE, IMAGE_SIZE])
image = tf.cast(image / 255., tf.float32)
image = tf.expand_dims(image, 0)
if i == 0:
print(image.dtype)
yield [image]
# This enables quantization
# This sets the representative dataset for quantization
converter = tf.lite.TFLiteConverter.from_saved_model(base_saved_model)
# converter = tf.lite.TFLiteConverter.from_keras(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT] # issue here?
converter.representative_dataset = representative_data_gen
converter.target_spec.supported_ops = [
# tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
# tf.lite.OpsSet.SELECT_TF_OPS, # enable TensorFlow ops.
tf.lite.OpsSet.TFLITE_BUILTINS_INT8 # This ensures that if any ops can't be quantized, the converter throws an error
]
# This ensures that if any ops can't be quantized, the converter throws an error
# For full integer quantization, though supported types defaults to int8 only, we explicitly declare it for clarity.
converter.target_spec.supported_types = [tf.int8]
converter.target_spec.supported_ops += [tf.lite.OpsSet.TFLITE_BUILTINS]
# These set the input and output tensors to uint8 (added in r2.3)
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model_quantized = converter.convert()
Everything runs with no errors, but when I try to actually run an image through the model, it returns garbage. I tried removing the quantization to see if that was the issue, but even without quantization it returns seemingly random bounding boxes that are completely off from the model's performance prior to conversion. The shape of the output tensors look fine, it's just the content is all wrong.
What's the right way to get this model converted to a quantized tflite form? I should note that I can't use the tflite_convert utility because I need to quantize the model, and it appears according to the source code that the quantize_weights flag is deprecated? There are a bunch of conflicting resources I see from TF1 and TF2 about this conversion process so I'm pretty confused.
Note: I'm using a retrained SSD MobileNet from the model zoo. I have not made any changes to the architecture in my training workflow. I've confirmed that the errors persist even on the base model pulled directly from the object detection model zoo.
I’m have a very similar problem with Post Training Quantization and asked about it on GitHub
I could manage to get results from the TFLite model but they were not good enough. Here is the notebook how I did it. Maybe it helps you to get a step forward.
I trained the model using autokeras with TensorFlow 2.5.
I saved the pre-trained model using both methods explained on Keras (TensorFlow) home page.
model.save(f'model_auto_keras{max_trials}.h5') model.save("keras_test_save_model")
again when I want to load the saved model using
model = tf.keras.models.load_model(f'model_auto_keras{max_trials}.h5')
and
model1 = tf.keras.models.load_model("keras_test_save_model/")
both methods are not doing well in my case.
saying ValueError: Unknown layer: Custom>
ValueError
ValueError: Unknown layer: Custom>MultiCategoryEncoding.
Please ensure this object is passed to the `custom_objects` argument. See
https://www.tensorflow.org/guide/keras/save_and_serialize#registering_the_custom_object for
details.
the main problem is Custom layer >> MultiCategoryEncoding which is not available in keras.
RuntimeError
#krishna
You can try:
model = tf.keras.models.load_model('model.h5', custom_objects={'CategoryLayerName': tf.keras.layers.CategoryEncoding()})
In your model declaration use layer name for CategoryEncoding layer.
I'm not sure if it should be tf.keras.layers.CategoryEncoding() or tf.keras.layers.CategoryEncoding
Hi I am having some serious problems saving and loading a tensorflow model which is combination of hugging face transformers + some custom layers to do classfication. I am using the latest Huggingface transformers tensorflow keras version. The idea is to extract features using distilbert and then run the features through CNN to do classification and extraction. I have got everything to work as far as getting the correct classifications.
The problem is in saving the model once trained and then loading the model again.
I am using tensorflow keras and tensorflow version 2.2
Following is the code to design the model, train it, evaluate it and then save and load it
bert_config = DistilBertConfig(dropout=0.2, attention_dropout=0.2, output_hidden_states=False)
bert_config.output_hidden_states = False
transformer_model = TFDistilBertModel.from_pretrained(DISTIL_BERT, config=bert_config)
input_ids_in = tf.keras.layers.Input(shape=(BERT_LENGTH,), name='input_token', dtype='int32')
input_masks_in = tf.keras.layers.Input(shape=(BERT_LENGTH,), name='masked_token', dtype='int32')
embedding_layer = transformer_model(input_ids_in, attention_mask=input_masks_in)[0]
x = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(50, return_sequences=True, dropout=0.1,
recurrent_dropout=0, recurrent_activation="sigmoid",
unroll=False, use_bias=True, activation="tanh"))(embedding_layer)
x = tf.keras.layers.GlobalMaxPool1D()(x)
outputs = []
# lots of code here to define the dense layers to generate the outputs
# .....
# .....
model = Model(inputs=[input_ids_in, input_masks_in], outputs=outputs)
for model_layer in model.layers[:3]:
logger.info(f"Setting layer {model_layer.name} to not trainable")
model_layer.trainable = False
rms_optimizer = RMSprop(learning_rate=0.001)
model.compile(loss=SigmoidFocalCrossEntropy(), optimizer=rms_optimizer)
# the code to fit the model (which works)
# then code to evaluate the model (which also works)
# finally saving the model. This too works.
tf.keras.models.save_model(model, save_url, overwrite=True, include_optimizer=True, save_format="tf")
However, when I try to load the saved model using the following
tf.keras.models.load_model(
path, custom_objects={"Addons>SigmoidFocalCrossEntropy": SigmoidFocalCrossEntropy})
I get the following load error
ValueError: The two structures don't have the same nested structure.
First structure: type=TensorSpec str=TensorSpec(shape=(None, 128), dtype=tf.int32, name='inputs')
Second structure: type=dict str={'input_ids': TensorSpec(shape=(None, 5), dtype=tf.int32, name='inputs/input_ids')}
More specifically: Substructure "type=dict str={'input_ids': TensorSpec(shape=(None, 5), dtype=tf.int32, name='inputs/input_ids')}" is a sequence, while substructure "type=TensorSpec str=TensorSpec(shape=(None, 128), dtype=tf.int32, name='inputs')" is not
Entire first structure:
.
Entire second structure:
{'input_ids': .}
I believe the issue is because TFDistilBertModel layer can be called using a dictionary input from DistilBertTokenizer.encode() and that happens to be the first layer. So the model compiler on load expects that to be the input signature to the call model. However, the inputs defined to the model are two tensors of shape (None, 128)
So how do I tell the load function or the save function to assume the correct signatures?
I solved the issue.
The issue was the object transformer_model in the above code is itself not a layer. So if we want to embed it inside another keras layer we should use the internal keras layer that is wrapped in the model
So changing the line
embedding_layer = transformer_model(input_ids_in, attention_mask=input_masks_in[0]
to
embedding_layer = transformer_model.distilbert([input_ids_in, input_masks_in])[0]
makes everything work. Hope this helps someone else. Took a long time to debug through tf.keras code to figure this one out although in hindsight it is obvious. :)
I suffered the same problem, casually, yesterday. My solution is very similar to yours, I supposed that the problem was due to how tensorflow keras processes custom models so, the idea was to use the layers of the custom model inside my model. This has the advantage of not calling explicitly the layer by its name (in my case, it is useful for easy building more generic models using different pretrained encoders):
sent_encoder = getattr(transformers, self.model_name).from_pretrained(self.shortcut_weights).layers[0]
I don't explored all the models of HuggingFace, but a few that I tested seem to be a custom model with only one custom layer.
Your solution also works like a charm, in fact, both solutions are the same if "distilbert" references to ".layers[0]".
I'm trying to build a Keras model using a DenseFeatures layer as the input; the input comes as a dict of Tensors. TF is insisting that I use model.build() to build the model before optimization, but I can't build it due to DenseFeatures not having an input shape. I get the error
AttributeError: 'DenseFeatures' object has no attribute 'shape'
How can I resolve this? Here's my code:
input_layer = tf.keras.layers.DenseFeatures(params.columns)
predictions = Dense(1, input_dim=len(params.columns), activation='softmax')(input_layer)
model = Sequential([input_layer, predictions])
model.build()
ETA: some further information for insight: I'm not actually fitting the model with this code; rather, I'm creating an EstimatorSpec to use with a Sagemaker model (thus it seems like this will probably require a bit of weird footwork between two different paradigms.)
I have keras pretrained model(model.h5). And I want to prune that model with tensorflow Magnitude-based weight pruning with Keras. One curious things is that my pretrained model is built with original keras model > I mean that is not from tensorflow.keras. Inside tensorflow Magnitude-based weight pruning with Keras example, they show how to do with tensorflow.keras model. I want to ask is that can I use their tool to prune my original keras pretrained model?
inside their weight pruning toolkit ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
inside their weight pruning toolkit ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
For my original pretrained model, I load the weight from model.h5 and can call model.summary() after I apply prune_low_magnitude() none of the method from model cannot call including model.summary() method. And show the error like AttributeError: 'NoneType' object has no attribute 'summary'
model = get_training_model(weight_decay)
model.load_weights('model/keras/model.h5')
model.summary()
epochs = 1
end_step = np.ceil(1.0 * 100 / 2).astype(np.int32) * epochs
print(end_step)
new_pruning_params = {
'pruning_schedule': tfm.sparsity.keras.PolynomialDecay(initial_sparsity=0.1,
final_sparsity=0.90,
begin_step=40,
end_step=end_step,
frequency=30)
}
new_pruned_model = tfm.sparsity.keras.prune_low_magnitude(model, **new_pruning_params)
print(new_pruned_model.summary())
Inside their weight pruning toolkit
enter link description here ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
For my original pretrained model, I load the weight from model.h5 and can call model.summary() after I apply prune_low_magnitude() none of the method from model cannot call including model.summary() method. And show the error like
AttributeError: 'NoneType' object has no attribute 'summary'
I hope this answer still helps, but I recently had the same issue that prune_low_magnitude() returns an object of type 'None'. Also new_pruned_model.compile() would not work.
The model I had been using was a pretrained model that could be imported from tensorflow.python.keras.applications.
For me this worked:
(0) Import the libraries:
from tensorflow_model_optimization.python.core.api.sparsity import keras as sparsity
from tensorflow.python.keras.applications.<network_type> import <network_type>
(1) Define the pretrained model architecture
# define model architecture
loaded_model = <model_type>()
loaded_model.summary()
(2) Compile the model architecture and load the pretrained weights
# compile model
opt = SGD(lr=learn_rate, momentum=momentum)
loaded_model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
loaded_model.load_weights('weight_file.h5')
(3) set pruning parameters and assign pruning schedule
# set pruning parameters
pruning_params = {
'pruning_schedule': sparsity.PolynomialDecay(...)
}
# assign pruning schedule
model_pruned = sparsity.prune_low_magnitude(loaded_model, **pruning_params)
(4) compile model and show summary
# compile model
model_pruned.compile(
loss=tf.keras.losses.categorical_crossentropy,
optimizer='SGD',
metrics=['accuracy'])
model_pruned.summary()
It was important to import the libraries specifically from tensorflow.python.keras and use this keras model from the TensorFlow library.
Also, it was important to use the TensorFlow Beta Release (pip install tensorflow==2.0.0b1), otherwise still an object with type 'None' would be returned by prune_low_magnitude.
I am using PyCharm 2019.1.3 (x64) as IDE. Here is the link that led me to this solution: https://github.com/tensorflow/model-optimization/issues/12#issuecomment-526338458