Recursively building a data class in Kotlin - kotlin

I have am trying to create a recursive data class like so:
data class AttributeId (
val name: String,
val id: Int,
val children: List<AttributeId>?
)
The thing I'm struggling with now is building the data class by iterating over a source object.
How do I recursively build this object?? Is a data class the wrong solution here?
EDIT: Some more information about the Source object from which I want to construct my data class instance
The source object is a Java Stream that essentially* has the following shape:
public Category(final String value,
final Integer id,
final List<Category> children) {
this.value = value;
this.id = id;
this.children = children;
}
(For brevity the fields I don't care about have been removed from example)
I think I need to map over this stream and call a recursive function in order to construct the AttributeId data class, but my attempts seem to end in a stack overflow and a lot of confusion!

I don't think there's anything necessarily wrong with a data class that contains references to others.
There are certainly some gotchas.  For example:
If the list were mutable, or if its field was mutable (i.e. var rather than val), then you'd have to take care because its hashcode &c could change.
And if the chain of links could form a loop (i.e. you could follow the links and end up back at the original class), that could be very dangerous.  (E.g. calling a method such as toString() or hashCode() might either get stuck in an endless loop or crash the thread with a StackOverflowError.  You'd have to prevent that by overriding those methods to prevent them recursing.)  But that couldn't happen if the list and field were both immutable.
None of these issues are specific to data classes, though; a normal class could suffer the same issues (especially if you overrode methods like toString() or hashCode() without taking care).  So whether you make this a data class comes down to whether it feels like one: whether its primary purpose is to hold data, and/or whether the automatically-generated methods match how you want it to behave.
As Tenfour04 says, it depends what you're constructing these from.  If it naturally forms a tree structure, then this could be a good representation for it.
Obviously, you wouldn't be able to construct a parent before any of its children.  (In particular, the first instance you create would have to have either null or an empty list for its children.)  This would probably mean traversing the source in post-order.  The rest should fall out naturally from that.

Related

Kotlin modifying dataclass object key from map changes the reference after modifying variable

I have a MutableMap that its keys are objects from a DataClass (User dataclass), and the values are arrays from other Dataclass (Dog dataclass). If i have a variable with a User object, and i put it in the MutableMap and i test if the map contains the User, it says that is true. But after putting the user in the MutableMap if i change one of the attributes of the User object using the variable that holds the User object, the Map says that it doesnt contains the user object.
This is an example
data class User(
var name: String,
var project: String,
)
data class Dog(
var kind: String
)
fun main(args: Array<String>) {
var mapUserDogs: MutableMap<User, MutableList<Dog>> = mutableMapOf()
var userSelected = User("name2", "P2")
mapUserDogs.put(
User("name1", "P1"),
mutableListOf(Dog("R1"), Dog("R2"))
)
mapUserDogs.put(
userSelected,
mutableListOf(Dog("R21"), Dog("R31"))
)
println(userSelected)
println(mapUserDogs.keys.toString())
println(mapUserDogs.contains(userSelected))
println(mapUserDogs.values.toString())
println("\n")
userSelected.name = "Name3"
println(userSelected)
println(mapUserDogs.keys.toString())
println(mapUserDogs.contains(userSelected))
println(mapUserDogs.values.toString())
}
The prints statements show this:
User(name=name2, project=P2)
[User(name=name1, project=P1), User(name=name2, project=P2)]
true
[[Dog(kind=R1), Dog(kind=R2)], [Dog(kind=R21), Dog(kind=R31)]]
User(name=Name3, project=P2)
[User(name=name1, project=P1), User(name=Name3, project=P2)]
false
[[Dog(kind=R1), Dog(kind=R2)], [Dog(kind=R21), Dog(kind=R31)]]
Process finished with exit code 0
But it doesn't make sense. Why the map says that it doesn't contains the user object if its clear that it still holds the reference to it after being modified?
User(name=Name3, project=P2)
[User(name=name1, project=P1), User(name=Name3, project=P2)]
The user in the keys collection was also changed when i modified the userSelected variable, so now the object has it attribute name as "Name3" in both the variable and in the Map keys, but it still says that it doesnt contains it.
What can i do so that i can change the attributes in the userSelected object and the Map still return true when using the "contains" method?. And doing the same process in reverse shows the same. If i get from the map the user and i modify it, the userVariable is also modified but if i later test if the map contains the userVariable, it says false.
What can i do so that i can change the attributes in the userSelected object and the Map still return true when using the "contains" method?
There is nothing you can do that preserves both your ability to look up the entry in the map and your ability to modify the key.
Make your data class immutable (val instead of var, etc.), and when you need to change a mapping, remove the old key and put in the new key. That's really the only useful thing you can do.
To add to Louis Wasserman's correct answer:
This is simply the way that maps work in Kotlin: their contract requires that keys don't change significantly once stored. The docs for java.util.Map* spell this out:
Note: great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an object is changed in a manner that affects equals comparisons while the object is a key in the map.
The safest approach is to use only immutable objects as keys. (Note that not just the object itself, but any objects it references, and so on, must all be immutable for it to be completely safe.)
You can get away with mutable keys as long as, once the key is stored in the map, you're careful never to change anything that would affect the results of calling equals() on it. (This may be appropriate if the object needs some initial set-up that can't all be done in its constructor, or to avoid having both mutable and immutable variants of a class.) But it's not easy to guarantee, and leaves potential problems for future maintenance, so full immutability is preferable.
The effects of mutating keys can be obvious or subtle. As OP noticed, mappings may appear to vanish, and maybe later reappear. But depending on the exact map implementation, it may cause further problems such as errors when fetching/adding/removing unrelated mappings, memory leaks, or even infinite loops. (“The behaviour… is not specified” means that anything can happen!)
What can i do so that i can change the attributes in the userSelected object and the Map still return true when using the "contains" method?
What you're trying to do there is to change the mapping. If you store a map from key K1 to value V, and you mutate the key to hold K2, then you're effectively saying “K1 no longer maps to V; instead, K2 now maps to V.”
So the correct way to do that is to remove the old mapping, and then add the new one. If the key is immutable, that's what you have to do — but even if the key is mutable, you must remove the old mapping before changing it, and then add a new mapping after changing it, so that it never changes while it's stored in the map.
(* The Kotlin library docs don't address this, unfortunately — IMHO this is one of many areas in which they're lacking, as compared to the exemplary Java docs…)
That happens because data classes in Kotlin are compared by value, unlike regular classes which are compared by reference. When you use a data class as a key, the map gets searched for a User with the same string values for the name and project fields, not for the object itself in memory.
For example:
data class User(
var name: String,
var project: String,
)
val user1 = User("Daniel", "Something Cool")
val user2 = User("Daniel", "Something Cool")
println(user1 == user2) // true
works because, even though they are different objects (and thus different references), they have the same name and project values.
However, if I were to do this:
user1.name = "Christian"
println(user1 == user2) // false
the answer would be false because they don't share the same value for all of their fields.
If I made User a standard class:
class User(
var name: String,
var project: String,
)
val user1 = User("Daniel", "Something Cool")
val user2 = User("Daniel", "Something Cool")
println(user1 == user2) // false
the answer would be false because they are different references, even though they share the same values.
For your code to work the way you want, make User a regular class instead of a data class.
That's the key difference between regular classes and data classes: a class is passed by reference, a data class is passed by value. Data classes are nothing more than collections of values with (optionally) some methods attached to them, classes are individual objects.

When is a class a data class?

I know what classes are about, but for better understanding I need a use case. Recently I discovered the construct of data classes. I get the idea behind normal classes, but I cannot imagine a real use case for data classes.
When should I use a data class and when I use a "normal" class? For all I know, all classes keep data.
Can you provide a good example that distinguishes data classes from non-data classes?
A data class is used to store data. It's lighter than a normal class, and can be compared to an array with key/value (dictionary, hash, etc.), but represented as an object with fixed attributes. In kotlin, according to the documentation, that adds those attributes to the class:
equals()/hashCode() pair
toString() of the form "User(name=John, age=42)"
componentN() functions corresponding to the properties in their order of declaration.
copy() function
Also it has a different behavior during class inheritence :
If there are explicit implementations of equals(), hashCode(), or toString() in the data class body or final implementations in a
superclass, then these functions are not generated, and the existing
implementations are used.
If a supertype has componentN() functions that are open and return compatible types, the corresponding functions are generated for the
data class and override those of the supertype. If the functions of
the supertype cannot be overridden due to incompatible signatures or
due to their being final, an error is reported.
Providing explicit implementations for the componentN() and copy() functions is not allowed.
So in kotlin, if you want to describe an object (a data) then you may use a dataclass, but if you're creating a complex application and your class needs to have special behavior in the constructor, with inheritence or abstraction, then you should use a normal class.
I do not know Kotlin, but in Python, a dataclass can be seen as a structured dict. When you want to use a dict to store an object which has always the same attributes, then you should not put it in a dict but use a Dataclass.
The advantage with a normal class is that you don't need to declare the __init__ method, as it is "automatic" (inherited).
Example :
This is a normal class
class Apple:
def __init__(size:int, color:str, sweet:bool=True):
self.size = size
self.color = color
self.sweet = sweet
Same class as a dataclass
from dataclasses import dataclass
#dataclass
class Apple:
size: int
color: str
sweet: bool = True
Then the advantage compared to a dict is that you are sure of what attribute it has. Also it can contains methods.
The advantage over to a normal class is that it is simpler to declare and make the code lighter. We can see that the attributes keywords (e.g size) are repeated 3 times in a normal class, but appear only once in a dataclass.
The advantage of normal class also is that you can personalize the __init__ method, (in a dataclass also, but then you lose it's main advantage I think) example:
# You need only 2 variable to initialize your class
class Apple:
def __init__(size:int, color:str):
self.size = size
self.color = color
# But you get much more info from those two.
self.sweet = True if color == 'red' else False
self.weight = self.__compute_weight()
self.price = self.weight * PRICE_PER_GRAM
def __compute_weight(self):
# ...
return (self.size**2)*10 # That's a random example
Abstractly, a data class is a pure, inert information record that doesn’t require any special handling when copied or passed around, and it represents nothing more than what is contained in its fields; it has no identity of its own. A typical example is a point in 3D space:
data class Point3D(
val x: Double,
val y: Double,
val z: Double
)
As long as the values are valid, an instance of a data class is entirely interchangeable with its fields, and it can be put apart or rematerialized at will. Often there is even little use for encapsulation: users of the data class can just access the instance’s fields directly. The Kotlin language provides a number of convenience features when data classes are declared as such in your code, which are described in the documentation. Those are useful when for example building more complex data structures employing data classes: you can for example have a hashmap assign values to particular points in space, and then be able to look up the value using a newly-constructed Point3D.
val map = HashMap<Point3D, String>()
map.set(Point3D(3, 4, 5), "point of interest")
println(map.get(Point3D(3, 4, 5))) // prints "point of interest"
For an example of a class that is not a data class, take FileReader. Underneath, this class probably keeps some kind of file handle in a private field, which you can assume to be an integer (as it actually is on at least some platforms). But you cannot expect to store this integer in a database, have another process read that same integer from the database, reconstruct a FileReader from it and expect it to work. Passing file handles between processes requires more ceremony than that, if it is even possible on a given platform. That property makes FileReader not a data class. Many examples of non-data classes will be of this kind: any class whose instances represent transient, local resources like a network connection, a position within a file or a running process, cannot be a data class. Likewise, any class where different instances should not be considered equal even if they contain the same information is not a data class either.
From the comments, it sounds like your question is really about why non-data classes exist in Kotlin and why you would ever choose not to make a data class. Here are some reasons.
Data classes are a lot more restrictive than a regular class:
They have to have a primary constructor, and every parameter of the primary constructor has to be a property.
They cannot have an empty primary constructor.
They cannot be open so they cannot be subclassed.
Here are other reasons:
Sometimes you don't want a class to have a copy function. If a class holds onto some heavy state that is expensive to copy, maybe it shouldn't advertise that it should be copied by presenting a copy function.
Sometimes you want to use an instance of a class in a Set or as Map keys without two different instances being considered as equivalent just because their properties have the same values.
The features of data classes are useful specifically for simple data holders, so the drawbacks are often something you want to avoid.

Where should the code processing the state of the object be?

I have a class as follows:
data class ProductState(
val id: Int,
val products: MutableMap<Int, MutableSet<Int>> = mutableMapOf(),
val customerTopics: Topic = Topic()
)
It is basically a data class.
Now I have a function that among other things, processes the products and customerTopics and creates some output based on the processing.
But it seems to me that it is not a good idea to have the logic in the function.
My question is:
Do we create methods inside the data class for the processing of the object'state? If so would it be some companion object? Or is there some other design pattern that deals with this better?
In kotlin you have several options:
Additional method on the data class (if it should be called in multiple other places);
Public extension method in the same file as the data class (if it should be called in multiple other places but you want to keep your data class simple and have the handling methods separated);
Private extension method in the same file as the only place where it is called (this only applies if this processing is to be called in a single place in your code);
Private method in the only place where this processing is needed.
The best place really depends on what the processing is (is it very specific to ProductState or does it need additional data? If it is very specific then it may make sense to keep it as a ProductState method or an extension function) and in how many places it will be triggered (if in a single very specific place, then maybe keeping it along-side that piece of code as a private extension function or private method might be the best option).

Checking to see if two objects within the same sealed class are of the same type

I have a sealed class declared as follows:
sealed class SealedClass {
object Pizza: SealedClass()
data class Hamburger(val hasCheese: Boolean): SealedClass()
}
I have a map that maps SealedClass keys to String values and I would like to retrieve a particular string whenever I access the SealedClass.Pizza key within the map, but the result of accessing the SealedClass.Pizza entry returns null when I attempt to use a SealedClass.Pizza key that I construct in a different segment of my code.
The SealedClass.Pizza objects produced seem to have different hashes, which would probably explain why this is the case. Printing them results in
SealedClass$Pizza#4cf4ae53 and SealedClass$Pizza#21773412
I was under the impression that objects were the same across all instances of a class, so I don't know why they have different hashes, but regardless, I would like to be able to use both of these SealedClass.Pizza objects to access the same string. How might I do this?

What design pattern to use for instantited objects containing permutations of a string?

I would like to know if there is a design pattern to cover making multiple objects representing mutiple permutations of a string. For example:
I have a database table containing item names.
Each item has a sort of "signature" (can't think of a better word for it), which is all the letters of the item name, sorted in alphabetical order with the spaces removed.
Given a "soup string" of jumbled up letters, I would like to sort those letters in alphabetical order to match it to a signature in the database, but here's the catch...
Each soup string may contain a few extra letters. So what I'm looking for is a design pattern which would be suitable for taking a string and returning a list of objects, each representing a permutation of that soup string, which I can then fire at the database.
I was thinking about just using a factory, but isn't this outside of the scope of a factory? It does contain logic, (am I right in saying this is not business logic?), but perhaps this is acceptable for a factory or factory method? Then again, perhaps this is an perfect usecase for a factory.
Ultimately, I will probably just go with the factory method. I just wanted to see if there was a better option.
Thanks in advance.
Let's start with an object-oriented way of creating n objects from a given item. First, let's assume that the item is of type String; you can create a class Permutations which implements the interface Iterable<String> (basically, an object that acts as a list of elements of type String)
data class Permutations(val strings: Iterable<String>): Iterable<String> {
constructor(string: String): this(...) {
# transform string to permutations here (bonus: with lazy computations)
}
override fun iterator(): Iterator<String> = strings.iterator()
}
Now, any object of type Permutations can replace a list of type String. Note that this class has two constructors, one takes a list of strings (the primary basic constructor) and one takes just one string and transforms it. This is not a design pattern; it's just a nice way to write objects out of objects without using static methods on util classes.
You can encapsulate the computation that transforms your string into permutations in (1) a different object (such as a strategy class), (2) a lambda function or (3) write our logic into the constructor (not recommended). The way you encapsulate the computation depends on how much flexibility you need. :)
Edit: Small improvement for the primary constructor.