Since there is no traditional loop in Kotlin (as per this article), how would you write a for loop in Kotlin that loops n times, or specifically, zero times if n is zero?
The equivalent in Java would be
int n = 0;
for (int index = 0; index < n; index++) {
// do this n times...
}
You could use repeat for this instead of a for loop or a range...
val n = 5
repeat(n) {
// ...
}
If you need to use the counter, you can either refer to it with the default it or rename it:
repeat(n) { i ->
// Do something with i
}
Use ranges and progressions
val n = 5
for (a in 0 until n) {
//Do something
}
Related
It's possible to use for loop with double indices in Java, e.g:
for (int j = 0, k = myArray.length - 1; j < myArray.length; j++, k--)
To iterate myArray elements from the first element using j and from the last element using k simultaneously without using inner loop. How can we do this in Kotlin without using inner loop.
Kotlin doesn't provide a way to permit what you attempt to do.
Because I imagine your case is purely for exemple, I purpose you two solutions:
1. The good old way
The most optimized for the exemple you give.
for (i in a.indices) {
val j = a.size - 1 - i
println("($i, $j)")
}
(0, 3)(1, 2)(2, 1)(3, 0)
See code snippet on play.kotlinlang.org
2. The .zip() way
Can be usefull on some contexts, the zip method combine two lists of the same size on one list of Tuples which can be used after directly.
val indices = a.indices;
for (i in indices.zip(indices.reversed())) {
println(i)
}
(0, 3)(1, 2)(2, 1)(3, 0)
See code snippet on play.kotlinlang.org
You don't need an inner loop. Just create an additional variable inside for loop.
for(j in myArray.indices) {
val k = myArray.size - 1 - j
// Use j and k here
}
Or alternatively,
var k = myArray.size - 1
for(j in myArray.indices) {
// Use j and k here
k--
}
generateSequence() is powerful alternative for complex loops. Not so fast as pure for/while loop but very flexible and easy.
generateSequence(
0 to myArray.size - 1 // initial values
) {
it.first + 1 to it.second - 1 // new values after each iteration
}.takeWhile {
it.first < myArray.size // limit
}.forEach { (j, k) ->
println("$j $k")
}
And yes, it's good idea to not iterate second variable but calculate it from first (if applicable), as suggested in other answers.
Following loops:
for(var i = 0; i < A; i++) {
for(var j = 0; j < B; j++) {
for(var k = 0; k < C; k++) {
//not concerned with instructions here
}
}
}
As I understand each loop complexity is 2n+2 so based on that I calculate the complexity of above nested loops to be (2A+2)*((2B+2)*(2C+2)). Is this correct? if so, how do I get the big-o out of it?
Edit 1
I've learned so much about big-o since this question was asked and have found an interesting visualization that I'd like to place here in case others come across this thread. For detailed reference (way better than student textbooks) and original drawing check out Wikipedia. There are a variety of time complexities explained there.
Since the original question involves three nested loops each with a different n, then the big-o is O(A * B * C) as mentioned in the answers. The difficulty arises when we try to determine the big-o for something like this where A is an array of objects (aka hash in some languages). The algorithm itself non-sense and is for demonstration only (although I've been asked non-sense in interviews before):
var cache = {}
for(var i = 0; i < A.length; i++) {
var obj = A[i]
if(!obj.someProperty) {
continue;
}
else if(cache[obj.someProperty]) {
return obj;
}
else if(obj.someProperty === 'some value') {
for(var j = 1; j < A.length; j++) {
if(A[j].someProperty === obj.someProperty) {
cache[obj.someProperty] = obj.someProperty
break
}
}
}
else {
for(var j = i; j < A.length; j++) {
//do something linear here
}
}
}
The outer loop is O(A.length). For inner loops:
obj.someProperty does not exist, we have no complexity per theory.
obj.someProperty is in the cache, we have no complexity per theory.
obj.someProperty is equal to some value either of:
we have O(A.length - 1) where there are no duplicates
We have O(A.length - x) where A.length - x refers to a duplicate's index within A.
Everything else, we have O(log A.length)
At best performance this algorithm gives us O(3) when A[0] and A[1] are considered duplicates and A[0].someProperty === 'some value' as we'll have one iteration for outer loop and one iteration of inner loop (3.2 A.length - x = index 1, finally 3rd iteration returns cached value breaking out of the outer loop entirely. At worse we'll have O(A.length log A.length) as the outer loop and inner loop at 4 are exhausted when no object has someProperty === 'some value'.
To "optimize" this algorithm we can simply write as follows:
for(var i = 0; i < A.length; i++) {
if(A[i].someProperty === 'some value') {
return obj
}
else {
for(var j = i; j < A.length; j++) {
//do something linear here
}
}
}
The outermost for-loop runs a total of A times. For each iteration, the second-level for-loop runs B times, each time triggering C iterations of the omitted instructions.
Thus, the time complexity is O(A * B * C).
Constants are ignored while calculating the time complexity
O((2A+2)*((2B+2)*(2C+2)))
=> O((2A)(2B)(2C))
=> O(8*ABC)
=> O(ABC)
I have a quick question how can I loop over an NSMutable array starting from a certain index.
For Example I have these double loops I want k to start from the same index as l.
for (Line *l in L)
{
for (Line *k in L)
{
............
}
}
To elaborate further, lets say L has 10 object so l start from 0-10 and k from 0 -10. What I want is if l is equal 1 k should start from 1-10 rather than 0 - 10 and when l is equal 2 k should start from 2- 10 rather than 0. Any help is Appreciated
Objective-C is an extension of C, lookup the C for loop and you'll have your answer. HTH
Addendum
I was going to let you benefit from the learning experience of looking up the C for yourself, however at the time of writing all other answers since added give the code but it is not complete, so here is what you need to produce the l and k values in the order you wish:
for(NSInteger lIndex = 0; lIndex < L.count; lIndex++)
{
Line *l = L[lIndex]; // index into your array to get the element
for(NSInteger kIndex = lIndex; kIndex < L.count; kIndex++)
{
Line *k = L[kIndex];
// process your l and k
}
}
As you can see the for has three sub-parts which are the initialisation, condition, and increment. The initialisation is performed first, then the condition to determine whether to execute the for body, and the increment is executed after the statements in the body and before the condition is tested to determine if another iteration should be performed. A for loop is roughly (there are some differences that are unimportant here) to the while loop:
initialisation;
while(condition)
{
body statements;
increment;
}
You simply need to modify for-statement.
NSInteger indexYouNeed;
NSInteger iterationCount;
for (int i = indexYouNeed; i < iterationCount; i++) {
/* Your code here */
}
You may find this link helpfulll.
You have to use an indexed (ordinary) for loop instead of fast enumeration (for-in):
int l;
for (l=startValue; l<=endValue; l++)
{
int i;
for (int i=l; i<=endValue; i++)
{
…
}
}
i have created the recursive call tree by applying brute force technique but when i give this algorithm 100 values it takes trillion of years to compute..
what you guys suggest me to do that it runs fast by giving 100 values
here is what i have done so far
function fib(n) {
if (n =< 1) {
return n;
} else {
return fib(n - 1) + fib(n - 2);
}
}
You can do it also with a loop:
int a = 1;
int b = 1;
for(int i = 2; i < 100; i++){
int temp = a + b;
a = b;
b = temp;
}
System.out.println("Fib 100 is: "+b);
The runtime is linear and avoids the overhead caused by the recursive calls.
EDIT: Please note that the result is wrong. Since Fib(100) is bigger than Integer.MAX_VALUE you have to use BigInteger or similar to get the correct output but the "logic" will stay the same.
You could have a "cache", where you save already computed Fibonacci numbers. Every time you try to compute
fib(n-1) /* or */ fib(n-2) ;
You would first look into your array of already computed numbers. If it's there, you save a whole lot of time.
So every time you do compute a fibonacci number, save it into your array or list, at the corresponding index.
function fib(n)
{
if (n =< 1)
{
return n;
}
if(fiboList[n] != defaultValue)
{
return fiboList[n];
}
else
{
int fibo = fib(n-1) + fib(n-2);
fiboList[n] = fibo;
return fibo;
}
}
You can also do it by dynamic programming:
def fibo(n):
dp = [0,1] + ([0]*n)
def dpfib(n):
return dp[n-1] + dp[n-2]
for i in range(2,n+2):
dp[i] = dpfib(i)
return dp[n]
How many possible combinations of the variables a,b,c,d,e are possible if I know that:
a+b+c+d+e = 500
and that they are all integers and >= 0, so I know they are finite.
#Torlack, #Jason Cohen: Recursion is a bad idea here, because there are "overlapping subproblems." I.e., If you choose a as 1 and b as 2, then you have 3 variables left that should add up to 497; you arrive at the same subproblem by choosing a as 2 and b as 1. (The number of such coincidences explodes as the numbers grow.)
The traditional way to attack such a problem is dynamic programming: build a table bottom-up of the solutions to the sub-problems (starting with "how many combinations of 1 variable add up to 0?") then building up through iteration (the solution to "how many combinations of n variables add up to k?" is the sum of the solutions to "how many combinations of n-1 variables add up to j?" with 0 <= j <= k).
public static long getCombos( int n, int sum ) {
// tab[i][j] is how many combinations of (i+1) vars add up to j
long[][] tab = new long[n][sum+1];
// # of combos of 1 var for any sum is 1
for( int j=0; j < tab[0].length; ++j ) {
tab[0][j] = 1;
}
for( int i=1; i < tab.length; ++i ) {
for( int j=0; j < tab[i].length; ++j ) {
// # combos of (i+1) vars adding up to j is the sum of the #
// of combos of i vars adding up to k, for all 0 <= k <= j
// (choosing i vars forces the choice of the (i+1)st).
tab[i][j] = 0;
for( int k=0; k <= j; ++k ) {
tab[i][j] += tab[i-1][k];
}
}
}
return tab[n-1][sum];
}
$ time java Combos
2656615626
real 0m0.151s
user 0m0.120s
sys 0m0.012s
The answer to your question is 2656615626.
Here's the code that generates the answer:
public static long getNumCombinations( int summands, int sum )
{
if ( summands <= 1 )
return 1;
long combos = 0;
for ( int a = 0 ; a <= sum ; a++ )
combos += getNumCombinations( summands-1, sum-a );
return combos;
}
In your case, summands is 5 and sum is 500.
Note that this code is slow. If you need speed, cache the results from summand,sum pairs.
I'm assuming you want numbers >=0. If you want >0, replace the loop initialization with a = 1 and the loop condition with a < sum. I'm also assuming you want permutations (e.g. 1+2+3+4+5 plus 2+1+3+4+5 etc). You could change the for-loop if you wanted a >= b >= c >= d >= e.
I solved this problem for my dad a couple months ago...extend for your use. These tend to be one time problems so I didn't go for the most reusable...
a+b+c+d = sum
i = number of combinations
for (a=0;a<=sum;a++)
{
for (b = 0; b <= (sum - a); b++)
{
for (c = 0; c <= (sum - a - b); c++)
{
//d = sum - a - b - c;
i++
}
}
}
This would actually be a good question to ask on an interview as it is simple enough that you could write up on a white board, but complex enough that it might trip someone up if they don't think carefully enough about it. Also, you can also for two different answers which cause the implementation to be quite different.
Order Matters
If the order matters then any solution needs to allow for zero to appear for any of the variables; thus, the most straight forward solution would be as follows:
public class Combos {
public static void main() {
long counter = 0;
for (int a = 0; a <= 500; a++) {
for (int b = 0; b <= (500 - a); b++) {
for (int c = 0; c <= (500 - a - b); c++) {
for (int d = 0; d <= (500 - a - b - c); d++) {
counter++;
}
}
}
}
System.out.println(counter);
}
}
Which returns 2656615626.
Order Does Not Matter
If the order does not matter then the solution is not that much harder as you just need to make sure that zero isn't possible unless sum has already been found.
public class Combos {
public static void main() {
long counter = 0;
for (int a = 1; a <= 500; a++) {
for (int b = (a != 500) ? 1 : 0; b <= (500 - a); b++) {
for (int c = (a + b != 500) ? 1 : 0; c <= (500 - a - b); c++) {
for (int d = (a + b + c != 500) ? 1 : 0; d <= (500 - a - b - c); d++) {
counter++;
}
}
}
}
System.out.println(counter);
}
}
Which returns 2573155876.
One way of looking at the problem is as follows:
First, a can be any value from 0 to 500. Then if follows that b+c+d+e = 500-a. This reduces the problem by one variable. Recurse until done.
For example, if a is 500, then b+c+d+e=0 which means that for the case of a = 500, there is only one combination of values for b,c,d and e.
If a is 300, then b+c+d+e=200, which is in fact the same problem as the original problem, just reduced by one variable.
Note: As Chris points out, this is a horrible way of actually trying to solve the problem.
link text
If they are a real numbers then infinite ... otherwise it is a bit trickier.
(OK, for any computer representation of a real number there would be a finite count ... but it would be big!)
It has general formulae, if
a + b + c + d = N
Then number of non-negative integral solution will be C(N + number_of_variable - 1, N)
#Chris Conway answer is correct. I have tested with a simple code that is suitable for smaller sums.
long counter = 0;
int sum=25;
for (int a = 0; a <= sum; a++) {
for (int b = 0; b <= sum ; b++) {
for (int c = 0; c <= sum; c++) {
for (int d = 0; d <= sum; d++) {
for (int e = 0; e <= sum; e++) {
if ((a+b+c+d+e)==sum) counter=counter+1L;
}
}
}
}
}
System.out.println("counter e "+counter);
The answer in math is 504!/(500! * 4!).
Formally, for x1+x2+...xk=n, the number of combination of nonnegative number x1,...xk is the binomial coefficient: (k-1)-combination out of a set containing (n+k-1) elements.
The intuition is to choose (k-1) points from (n+k-1) points and use the number of points between two chosen points to represent a number in x1,..xk.
Sorry about the poor math edition for my fist time answering Stack Overflow.
Just a test for code block
Just a test for code block
Just a test for code block
Including negatives? Infinite.
Including only positives? In this case they wouldn't be called "integers", but "naturals", instead. In this case... I can't really solve this, I wish I could, but my math is too rusty. There is probably some crazy integral way to solve this. I can give some pointers for the math skilled around.
being x the end result,
the range of a would be from 0 to x,
the range of b would be from 0 to (x - a),
the range of c would be from 0 to (x - a - b),
and so forth until the e.
The answer is the sum of all those possibilities.
I am trying to find some more direct formula on Google, but I am really low on my Google-Fu today...