Now I want to do something on the branch and bound using SCIP, and begin from the branching rule. While I tracking the branching process I found something I cannot understand. Begining from getting the branching variable candidates using SCIPgetLPBranchCands, I get the SCIP_VAR** lpcands, then I select the first variable to branch using SCIPbranchVar. This branching rule works on each focused node.
Consider the branch decision at the number 1 node (the root node), after executing SCIPbranchVar function, SCIPgetChildren return two child nodes (2 and 3), but the child node number of root node changed, two or more child node appeared. Suppose node selector selected the node of number 2 to branch, SCIPgetSiblings return 3 siblings (3, 4, and 5).
To make it clear that what happened, I print the branching decision path using SCIPprintNodeRootPath, and print the relationship between nodes. The result shows that after I branching at a node on the selected variable, the SCIIP branching at the same node on another variable which I don't know.
I have print these information generated by scipoptsuite-7.0.1/scip/examples/Binpacking, no more branching decision is made. But more child nodes appearing after I replace the ryanfoster rule using the branching on the first variable. After that, I try the create child node branching style for my procedure, extra nodes appeared anyway.
I cannot find out what happened and how to totally control the branching process, it is very important for my work in the future for it determined how to design the branching rule. I have even try to read the source code of SCIP, unfortunately, it's too hard for me to read.
My procedure as follows:
main.cpp
/* standard library includes */
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
/* scip includes */
#include "objscip/objscip.h"
#include "objscip/objscipdefplugins.h"
/*user file includes*/
#include "branch_rule.h"
/* namespace usage */
using namespace std;
using namespace scip;
static
SCIP_RETCODE execmain()
{
SCIP* scip = NULL;
/* initialize SCIP environment */
SCIP_CALL( SCIPcreate(&scip) );
SCIP_CALL( SCIPincludeBranchRrule(scip) );
/* include default plugins */
SCIP_CALL( SCIPincludeDefaultPlugins(scip) );
SCIP_CALL( SCIPsetIntParam(scip,"presolving/maxrestarts",0) );
SCIP_CALL( SCIPsetSeparating(scip, SCIP_PARAMSETTING_OFF, TRUE) );
SCIP_CALL(SCIPreadProb(scip, "map18.mps.gz", NULL));
SCIP_CALL( SCIPsolve(scip) );
return SCIP_OKAY;
}
int main(int argc, char** argv)
{
return execmain() != SCIP_OKAY ? 1 : 0;
}
branch_rule.h
#ifndef VRP_BRANCH_RULE_H
#define VRP_BRANCH_RULE_H
#include "scip/scip.h"
#include <vector>
SCIP_RETCODE SCIPincludeBranchRrule(
SCIP* scip
);
#endif //VRP_BRANCH_RULE_H
branch_rule.cpp
#include "branch_rule.h"
#include <assert.h>
#include <string.h>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <fstream>
#include "scip/struct_tree.h"
#include "scip/type_var.h"
using namespace std;
/**#name Branching rule properties
*
* #{
*/
#define BRANCHRULE_NAME "branch rule test"
#define BRANCHRULE_DESC "branch rule test"
#define BRANCHRULE_PRIORITY 50000
#define BRANCHRULE_MAXDEPTH -1
#define BRANCHRULE_MAXBOUNDDIST 1.0
void printBranchTreeNode(SCIP_NODE *node, SCIP_NODE **siblings, int nsiblings){
ofstream f1("branch_path/node_information.txt", ios::app);
if(!f1)return;
f1 << "node number:" << node->number << ", sibling number: " << nsiblings;
if(NULL==node->parent)
f1 << std::endl;
else{
f1 << ", parent number: " << node->parent->number << std::endl;
}
f1 << setw(20) << "siblings:" << std::endl;
for(int i = 0; i < nsiblings; ++i){
f1 << setw(20) << "node number:" << siblings[i]->number << ", sibling number: " << nsiblings << ", parent number: " << siblings[i]->parent->number << endl;
}
f1.close();
}
static
SCIP_DECL_BRANCHEXECLP(branchExeclpTest)
{
assert(scip != NULL);
assert(branchrule != NULL);
assert(strcmp(SCIPbranchruleGetName(branchrule), BRANCHRULE_NAME) == 0);
assert(result != NULL);
SCIP_NODE *current_node = SCIPgetCurrentNode(scip) ;
SCIP_NODE **leaves = NULL;
int nleaves;
SCIP_CALL( SCIPgetLeaves (scip, &leaves, &nleaves) );
std::vector<SCIP_NODE*> leaves_vector;
for(int i =0; i < nleaves; ++i){
leaves_vector.push_back(leaves[i]);
}
SCIP_NODE **current_node_slibings = NULL;
int ncurrent_node_slibings;
SCIP_CALL( SCIPgetSiblings(scip, ¤t_node_slibings, &ncurrent_node_slibings) );
std::vector<SCIP_NODE*> slibings_vector;
for(int i =0; i < ncurrent_node_slibings; ++i){
slibings_vector.push_back(current_node_slibings[i]);
}
printBranchTreeNode(current_node, current_node_slibings, ncurrent_node_slibings);
SCIP_NODE **childrens;
int nchildrens;
SCIP_CALL( SCIPgetChildren(scip, &childrens, &nchildrens) );
std::vector<SCIP_NODE*> childrens_vector;
for(int i =0; i < nchildrens; ++i){
childrens_vector.push_back(childrens[i]);
}
stringstream filename;
filename.str("");
filename << "branch_path/branch_path_to_node_" << current_node->number <<".dat";
std::string stringFileName = filename.str();
FILE *fp = fopen(stringFileName.c_str(), "wt+");
SCIP_CALL( SCIPprintNodeRootPath(scip, current_node, fp) );
fclose(fp);
// create child node branching style
SCIP_NODE *childsame;
SCIP_NODE *childdiffer;
SCIP_CALL( SCIPcreateChild(scip, &childsame, 0.0, SCIPgetLocalTransEstimate(scip)) );
SCIP_CALL( SCIPcreateChild(scip, &childdiffer, 0.0, SCIPgetLocalTransEstimate(scip)) );
/*
// SCIPbranchVar branching style
SCIP_VAR** lpcands;
SCIP_Real* lpcandssol;
SCIP_Real* lpcandsfrac;
int nlpcands;
int npriolpcands;
int nfracimplvars;
SCIP_CALL( SCIPgetLPBranchCands(scip, &lpcands, &lpcandssol, &lpcandsfrac, &nlpcands, &npriolpcands, &nfracimplvars) );
SCIP_NODE* downchild;
SCIP_NODE* eqchild;
SCIP_NODE* upchild;
SCIP_CALL( SCIPbranchVar(scip, lpcands[0], &downchild, &eqchild, &upchild) );
// SCIP_CALL( SCIPbranchVar(scip, var, NULL, NULL, NULL) );
SCIP_CALL( SCIPgetLeaves (scip, &leaves, &nleaves) );
int numLeaves = SCIPgetNLeaves(scip);
SCIP_CALL( SCIPgetSiblings(scip, ¤t_node_slibings, &ncurrent_node_slibings) );
slibings_vector.clear();
for(int i =0; i < ncurrent_node_slibings; ++i){
slibings_vector.push_back(current_node_slibings[i]);
}
SCIP_CALL( SCIPgetChildren(scip, &childrens, &nchildrens) );
childrens_vector.clear();
for(int i =0; i < nchildrens; ++i){
childrens_vector.push_back(childrens[i]);
}
*/
return SCIP_OKAY;
}
SCIP_RETCODE SCIPincludeBranchRrule(
SCIP* scip /**< SCIP data structure */
){
SCIP_BRANCHRULEDATA* branchruledata;
SCIP_BRANCHRULE* branchrule;
branchruledata = NULL;
branchrule = NULL;
// include branching rule
SCIP_CALL( SCIPincludeBranchruleBasic(scip, &branchrule, BRANCHRULE_NAME, BRANCHRULE_DESC, BRANCHRULE_PRIORITY, BRANCHRULE_MAXDEPTH,
BRANCHRULE_MAXBOUNDDIST, branchruledata) );
assert(branchrule != NULL);
SCIP_CALL( SCIPsetBranchruleExecLp(scip, branchrule, branchExeclpTest) );
return SCIP_OKAY;
}
Does anyone can help me to solve this problem?
so the first thing I notice when looking at your code is that you do not set the result pointer. After branching, you need to set *result = SCIP_BRANCHED;.
Can you please try that and check if it fixes your problem?
Related
Running this very little snippet, to show a problem I have with a much larger code:
// Type your code here, or load an example.
#include <iostream>
#include <vector>
#include <memory>
using namespace std;
int main() {
auto res = make_unique<int>();
auto ptr = res.get();
if (ptr) {
*ptr = 5;
cout << *ptr << endl;
}
return 0;
}
with the -fanalyzer switch, I get a warning
warning: dereference of possibly-NULL 'operator new(4)' [CWE-690] [-Wanalyzer-possible-null-dereference]
But clearly I made all I could do to avoid this warning, but it is buried in the STL, which returns a unique_ptr with no validity control..
I understand the word "possibly" though..
Anyway to correct this on my side?
Update:
I made a mistake in the first go, now corrected
Update 2:
Even that code is refused
// Type your code here, or load an example.
#include <iostream>
#include <memory>
#include <vector>
using namespace std;
int main() {
auto i = new int(3);
if (!i) {
return 1;
}
unique_ptr<int> res(i);
auto ptr = res.get();
if (!ptr) {
return 1;
}
*ptr = 5;
cout << *ptr << endl;
return 0;
}
Please, see here
As for now (gcc-12), the analyzer is not recommended for C++ code although work is underway to support it.
https://developers.redhat.com/articles/2022/04/12/state-static-analysis-gcc-12-compiler#toward_support_for_c__
I am new to CGAL.
I tried to modify Examples/Arrangement_on_surfaces_2 Bezier_curves.cpp to save arrangement to file as shown below:
//! \file examples/Arrangement_on_surface_2/Bezier_curves.cpp
// Constructing an arrangement of Bezier curves.
#include <fstream>
#include <CGAL/basic.h>
#ifndef CGAL_USE_CORE
#include <iostream>
int main ()
{
std::cout << "Sorry, this example needs CORE ..." << std::endl;
return 0;
}
#else
#include <CGAL/Cartesian.h>
#include <CGAL/CORE_algebraic_number_traits.h>
#include <CGAL/Arr_Bezier_curve_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/IO/Arr_iostream.h>
#include "arr_inexact_construction_segments.h"
#include "arr_print.h"
typedef CGAL::CORE_algebraic_number_traits Nt_traits;
typedef Nt_traits::Rational NT;
typedef Nt_traits::Rational Rational;
typedef Nt_traits::Algebraic Algebraic;
typedef CGAL::Cartesian<Rational> Rat_kernel;
typedef CGAL::Cartesian<Algebraic> Alg_kernel;
typedef Rat_kernel::Point_2 Rat_point_2;
typedef CGAL::Arr_Bezier_curve_traits_2<Rat_kernel, Alg_kernel, Nt_traits>
Traits_2;
typedef Traits_2::Curve_2 Bezier_curve_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
//typedef CGAL::Arrangement_2<Traits_2> Arrangement;
int main (int argc, char *argv[])
{
// Get the name of the input file from the command line, or use the default
// Bezier.dat file if no command-line parameters are given.
const char *filename = (argc > 1) ? argv[1] : "Bezier.dat";
const char *outfilename = (argc > 1) ? argv[1] : "BezierOut.dat";
// Open the input file.
std::ifstream in_file (filename);
if (! in_file.is_open()) {
std::cerr << "Failed to open " << filename << std::endl;
return 1;
}
// Read the curves from the input file.
unsigned int n_curves;
std::list<Bezier_curve_2> curves;
Bezier_curve_2 B;
unsigned int k;
in_file >> n_curves;
for (k = 0; k < n_curves; k++) {
// Read the current curve (specified by its control points).
in_file >> B;
curves.push_back (B);
std::cout << "B = {" << B << "}" << std::endl;
}
in_file.close();
// Construct the arrangement.
Arrangement_2 arr;
insert (arr, curves.begin(), curves.end());
// Print the arrangement size.
std::ofstream out_file;
out_file.open(outfilename);
out_file << "The arrangement size:" << std::endl
<< " V = " << arr.number_of_vertices()
<< ", E = " << arr.number_of_edges()
<< ", F = " << arr.number_of_faces() << std::endl;
out_file << arr;
out_file.close();
return 0;
}
#endif
If I comment out the line out_file << arr; it works fine. Otherwise it generates a C2678 error in read_x_monotone_curve in Arr_text_formtter.h
I am using Visual Studio 15 x86.
Thank you for any help.
I solve this by modifying the print_arrangement(arr) routine in arr_print.h to save_arrangement(arr) with a std::ofstream in place of std::cout.
It appears that the << operator does not work.
If someone else has a better solution I am open to it.
Points of intersections in an arrangement of Bezier curves cannot be represented in an exact manner. Therefore, such an arrangement cannot be saved using the default export (<<) operator and the standard format.
The easiest solution is to store the curves, but this means that the arrangement must be recomputed each time the curves are read. Perhaps other solution could be devised, but they are not implemented.
I have a requirement to use only single core to test gzip performance in multi-core cpu environment(not sure what is the default settings for gzip in this case). Need help to find out the command to execute gzip compression in single core.
Thanks
gzip is single threaded by default so in effect it will look like it's running on one core ie it might run on several physical cores but it won't be in parallel.
If you absolutely must run on one core and you're on linux you would set affinity to a particular core.
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
This is code that I got from the man page.
#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)
int
main(int argc, char *argv[])
{
cpu_set_t set;
int parentCPU, childCPU;
int nloops, j;
if (argc != 4) {
fprintf(stderr, "Usage: %s parent-cpu child-cpu num-loops\n",
argv[0]);
exit(EXIT_FAILURE);
}
parentCPU = atoi(argv[1]);
childCPU = atoi(argv[2]);
nloops = atoi(argv[3]);
CPU_ZERO(&set);
switch (fork()) {
case -1: /* Error */
errExit("fork");
case 0: /* Child */
CPU_SET(childCPU, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
errExit("sched_setaffinity");
for (j = 0; j < nloops; j++)
getppid();
exit(EXIT_SUCCESS);
default: /* Parent */
CPU_SET(parentCPU, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
errExit("sched_setaffinity");
for (j = 0; j < nloops; j++)
getppid();
wait(NULL); /* Wait for child to terminate */
exit(EXIT_SUCCESS);
}
}
If you need to test with no interruptions from the kernel you need to write a kernel module for that.
I have this C++ program that will get key code and store it as a string in a text file. After I run the program the file is supposed to appear alongside my cpp file but I doesn't appear. I think is got to do with the Save function where the file input and output is happening. Does anyone notices any errors(I get none while compiling).
#include <iostream>
#include <Windows.h>
#include <Winuser.h>
#include <fstream>
using namespace std;
int Save (int Key_Stroke, char *file);
int main(){
char i;
while(1){
for(i = 8; i <= 190; i++){
if(GetAsyncKeyState(i) == -32767){
Save(i, "LOG.TXT");
}
}
}
system("PAUSE");
return 0;
}
int Save (int Key_Stroke, char *file){
if((Key_Stroke == 1) || (Key_Stroke == 2) || (Key_Stroke == 5))
return 0;
FILE *OUTPUT_FILE;
OUTPUT_FILE = fopen(file, "a+");
fprintf(OUTPUT_FILE, "%s", &Key_Stroke);
fclose(OUTPUT_FILE);
cout << Key_Stroke << endl;
return 0;
}
When using C fprintf (this isn't typically used in C++, see ofstream) you don't use reference operator & because you are passing value to function, not address. Also formatting string is wrong, you want to write int %d, not array of chars %s (more here)
Your Save function should look like
int Save(int Key_Stroke, const char *file)
{
if((Key_Stroke == 1) || (Key_Stroke == 2) || (Key_Stroke == 5))
return 0;
FILE *OUTPUT_FILE = fopen(file, "a+");
if(OUTPUT_FILE != NULL)
{
fprintf(OUTPUT_FILE, "%d", Key_Stroke);
fclose(OUTPUT_FILE);
}
cout << Key_Stroke << endl;
return 0;
}
Also notice const keyword in second argument of the function. This should be used to avoid writing to constant area of memory - directly written array of chars "LOG.TXT" .
Next thing, you should always check if the file you are trying to write to is correctly opened if(OUTPUT_FILE != NULL) .
So, after spending hours reading and understanding I have finally made my first OpenCL program that actually does something, which is it adds two vectors and outputs to a file.
#include <iostream>
#include <vector>
#include <cstdlib>
#include <string>
#include <fstream>
#define __CL_ENABLE_EXCEPTIONS
#include <CL/cl.hpp>
int main(int argc, char *argv[])
{
try
{
// get platforms, devices and display their info.
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
std::vector<cl::Platform>::iterator i=platforms.begin();
std::cout<<"OpenCL \tPlatform : "<<i->getInfo<CL_PLATFORM_NAME>()<<std::endl;
std::cout<<"\tVendor: "<<i->getInfo<CL_PLATFORM_VENDOR>()<<std::endl;
std::cout<<"\tVersion : "<<i->getInfo<CL_PLATFORM_VERSION>()<<std::endl;
std::cout<<"\tExtensions : "<<i->getInfo<CL_PLATFORM_EXTENSIONS>()<<std::endl;
// get devices
std::vector<cl::Device> devices;
i->getDevices(CL_DEVICE_TYPE_ALL,&devices);
int o=99;
std::cout<<"\n\n";
// iterate over available devices
for(std::vector<cl::Device>::iterator j=devices.begin(); j!=devices.end(); j++)
{
std::cout<<"\tOpenCL\tDevice : " << j->getInfo<CL_DEVICE_NAME>()<<std::endl;
std::cout<<"\t\t Type : " << j->getInfo<CL_DEVICE_TYPE>()<<std::endl;
std::cout<<"\t\t Vendor : " << j->getInfo<CL_DEVICE_VENDOR>()<<std::endl;
std::cout<<"\t\t Driver : " << j->getInfo<CL_DRIVER_VERSION>()<<std::endl;
std::cout<<"\t\t Global Mem : " << j->getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>()/(1024*1024)<<" MBytes"<<std::endl;
std::cout<<"\t\t Local Mem : " << j->getInfo<CL_DEVICE_LOCAL_MEM_SIZE>()/1024<<" KBbytes"<<std::endl;
std::cout<<"\t\t Compute Unit : " << j->getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>()<<std::endl;
std::cout<<"\t\t Clock Rate : " << j->getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>()<<" MHz"<<std::endl;
}
std::cout<<"\n\n\n";
//MAIN CODE BEGINS HERE
//get Kernel
std::ifstream ifs("vector_add_kernel.cl");
std::string kernelSource((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
std::cout<<kernelSource;
//Create context, select device and command queue.
cl::Context context(devices);
cl::Device &device=devices.front();
cl::CommandQueue cmdqueue(context,device);
// Generate Source vector and push the kernel source in it.
cl::Program::Sources sourceCode;
sourceCode.push_back(std::make_pair(kernelSource.c_str(), kernelSource.size()));
//Generate program using sourceCode
cl::Program program=cl::Program(context, sourceCode);
//Build program..
try
{
program.build(devices);
}
catch(cl::Error &err)
{
std::cerr<<"Building failed, "<<err.what()<<"("<<err.err()<<")"
<<"\nRetrieving build log"
<<"\n Build Log Follows \n"
<<program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices.front());
}
//Declare and initialize vectors
std::vector<cl_float>B(993448,1.3);
std::vector<cl_float>C(993448,1.3);
std::vector<cl_float>A(993448,1.3);
cl_int N=A.size();
//Declare and intialize proper work group size and global size. Global size raised to the nearest multiple of workGroupSize.
int workGroupSize=128;
int GlobalSize;
if(N%workGroupSize) GlobalSize=N - N%workGroupSize + workGroupSize;
else GlobalSize=N;
//Declare buffers.
cl::Buffer vecA(context, CL_MEM_READ_WRITE, sizeof(cl_float)*N);
cl::Buffer vecB(context, CL_MEM_READ_ONLY , (B.size())*sizeof(cl_float));
cl::Buffer vecC(context, CL_MEM_READ_ONLY , (C.size())*sizeof(cl_float));
//Write vectors into buffers
cmdqueue.enqueueWriteBuffer(vecB, 0, 0, (B.size())*sizeof(cl_float), &B[0] );
cmdqueue.enqueueWriteBuffer(vecB, 0, 0, (C.size())*sizeof(cl_float), &C[0] );
//Executing kernel
cl::Kernel kernel(program, "vector_add");
cl::KernelFunctor kernel_func=kernel.bind(cmdqueue, cl::NDRange(GlobalSize), cl::NDRange(workGroupSize));
kernel_func(vecA, vecB, vecC, N);
//Reading back values into vector A
cmdqueue.enqueueReadBuffer(vecA,true,0,N*sizeof(cl_float), &A[0]);
cmdqueue.finish();
//Saving into file.
std::ofstream output("vectorAdd.txt");
for(int i=0;i<N;i++) output<<A[i]<<"\n";
}
catch(cl::Error& err)
{
std::cerr << "OpenCL error: " << err.what() << "(" << err.err() <<
")" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
The problem is, for smaller values of N, I'm getting the correct result that is 2.6
But for larger values, like the one in the code above (993448) I get garbage output varying between 1 and 2.4.
Here is the Kernel code :
__kernel void vector_add(__global float *A, __global float *B, __global float *C, int N) {
// Get the index of the current element
int i = get_global_id(0);
//Do the operation
if(i<N) A[i] = C[i] + B[i];
}
UPDATE : Ok it seems the code is working now. I have fixed a few minor mistakes in my code above
1) The part where GlobalSize is initialized has been fixed.
2)Stupid mistake in enqueueWriteBuffer (wrong parameters given)
It is now outputting the correct result for large values of N.
Try to change the data type from float to double etc.