who is this inside a lambda expression when implementing SAM? - kotlin

I have the following interface (SAM):
fun interface WebResponseHandler
{
fun onWebResponseFinished(jsonString:String?)
}
and Inside a class, (lets call the class ClassA) i wrote the following code:
private val onInitWebResponseHandler: VolleyHandler.WebResponseHandler = VolleyHandler.WebResponseHandler()
{
Thread(ParseJsonStringOnInit(WeakReference(this),
weakRefIOnAllScoresDataFirstFetched, it)).start()
}
i can't understand why in the first argument of ParseJsonStringOnInit, this is considered as ClassA and not as VolleyHandler.WebResponseHandler?
Is this a convention when using SAM?

Related

How to call an abstract method from a Class parameter in Kotlin?

Aim
Have a function Book, which takes one of three Letter classes as argument myClass and then calls 'genericMethod()' from the abstract class which Letter*() has inherited.
Issue
If I try Book(LetterA()).read() I get the following error:
Type mismatch. Required: Class<SampleClassArguments.Alphabet> Found: SampleClassArguments.LetterA
Does Kotlin have any way to achieve this result?
Code
#Test
fun readBookTest() {
Book(LetterA()).read() /*<--error here*/
}
class Book(val myClass: Class<Alphabet>) {
fun read() {
val letterClass = myClass.getConstructor().newInstance()
letterClass.genericMethod(myClass.name)
}
}
class LetterA(): Alphabet()
class LetterB(): Alphabet()
class LetterC(): Alphabet()
abstract class Alphabet {
fun genericMethod(className: String) {
println("The class is: $className")
}
}
You need to define the Class type as covariant with the out keyword so any of the child classes is an acceptable argument:
class Book(val myClass: Class<out Alphabet>)
And when you use it, you need to pass the actual Class, not an instance of the class. You can get the Class by calling ::class.java on the name of the class:
#Test
fun readBookTest() {
Book(LetterA::class.java).read()
}

Returning reference to a singleton class instance within its functions

In the following code I would like to set a reference to the class instance so that static functions can return a reference to it:
open class TestRunner {
init {
instance = this
}
companion object {
private lateinit var instance: TestRunner
fun addTestSetups(vararg testSetups: () -> TestSetup): TestRunner {
for (setup in testSetups) {
testsSetups.add(setup)
}
return instance
}
}
}
But setting instance = this is not allowed. How can I return an instance of the class from a function while keeping the class as a singleton?
If I get you right, you want something like this:
abstract class TestRunner {
companion object : TestRunner()
}
This seems to work. Instead of keeping a variable that holds a reference to the class, simply referencing the name of the class is sufficient. However, to return an instance of the class from functions, the return type must be Companion:
open class TestRunner {
companion object {
fun addTestSetups(vararg testSetups: () -> TestSetup): Companion {
for (setup in testSetups) {
testsSetups.add(setup)
}
return TestRunner
}
}
}
This is not a true singleton because you can still create a new instance if you did this:
val testRunner = TestRunner()
However, if you never create an instance but only refer to the functions statically, it does behave like a singleton and the state of any private variables inside the companion object will still be maintained.
Update:
I came across this code on the Android developer site that shows an example of a class that is setup as a singleton:
class StockLiveData(symbol: String) : LiveData<BigDecimal>() {
private val stockManager: StockManager = StockManager(symbol)
private val listener = { price: BigDecimal ->
value = price
}
override fun onActive() {
stockManager.requestPriceUpdates(listener)
}
override fun onInactive() {
stockManager.removeUpdates(listener)
}
companion object {
private lateinit var sInstance: StockLiveData
#MainThread
fun get(symbol: String): StockLiveData {
sInstance = if (::sInstance.isInitialized) sInstance else StockLiveData(symbol)
return sInstance
}
}
}
But it should be pointed out that this example requires functions that need to return an instance to first check if the instance variable is set and if not, create a new instance. I'm not sure what the point of that is since to call the function you already have an instance. So why bother create a new instance? Doesn't seem to make any sense.
object in Kotlin is the singleton, not the class its defined within. A companion object has the extra convenience of allowing you to call it by the name of that outer class. But it otherwise shares no hierarchy with it.
To make your class subclassable, you can't define the functions in the companion object. But you can make the class abstract so it can't be instantiated unless subclassed. Then make your companion object extend the abstract class so it will have all those functions available.
abstract class TestRunner{
open fun addTestSetups(vararg testSetups: () -> TestSetup): TestRunner{
//...
return this
}
companion object: TestRunner()
}
Usage:
TestRunner.addTestSetups(someTestSetup)
Note that your singleton is not an instance of TestRunner. It is a singleton instance of a subclass of TestRunner. But since you define no extra functions and override nothing, it behaves exactly like a TestRunner.
If you want a subclass:
abstract class ExtendedTestRunner: TestRunner() {
fun someOtherFunction() {}
companion object: ExtendedTestRunner()
}
The companions are not being subclassed, but their abstract parents can be.

"same JVM signature" implementing kotlin interface containing getter method

interface MyInterface {
fun getTheString(): String
}
class MyClass(var theString: String) : MyInterface {
...
}
normally when I have a variable in the constructor for a class, it creates a getter and setter for that variable. In MyClass, the methods getTheString() and setTheString(String) exist when not implementing MyInterface.
When MyClass implements MyInterface, I get the error:
Accidental override: The following declarations have the same JVM signature (getTheString()Ljava/lang/String;):
public final fun (): String defined in MyClass
public abstract fun getTheString(): String defined in MyClass
I also have the error: Class 'MyClass' is not abstract and does not implement abstract member public abstract fun getTheString(): String defined in MyInterface.
So I have a few questions:
Why are 2 getter methods getting generated with the same JVM signature when implementing the interface versus one getter method getting generated without implementing the interface?
Why is it complaining I haven't implemented a getTheString() method when this method is automatically generated by kotlin?
How can I get the getter generated by the variable to become the implementation of the method in the interface?
If the interface is indeed in Kotlin, and you can change it, it should be
interface MyInterface {
val theString: String
}
in the first place. Java will still see getTheString(), but it's nicer to both implement and use in Kotlin.
Otherwise a good option is
class MyClass(#set:JvmName("setTheString") var _theString: String) : MyInterface {
override fun getTheString() = _theString
}
Unfortunately, it still has a duplicate getter, and you can't make only the getter private. Or
class MyClass(private var _theString: String) : MyInterface {
override fun getTheString() = _theString
fun setTheString(value: String) {
_theString = value
}
}
Note that if the interface is in Java, getTheString() will be visible to Kotlin as a property.
See issues https://youtrack.jetbrains.com/issue/KT-6653 and https://youtrack.jetbrains.com/issue/KT-19444 on the Kotlin bug tracker.

function extension for class in another class

I want to make a function extension for class inside of another class (for String in ModelAndView, not for inner), but have not found a way to do this without class inheritance. Is it possible at all?
Example of class extension:
class MyModelAndView : ModelAndView() {
infix fun String.to(value: Any?) {
addObject(this, value)
}
}
You can create member extension functions in classes, but these extensions can only be accessed in the class':
class X {
fun String.ext() = println("extension on $this called")
fun useExtension() {
val text: String = "myText"
text.ext()
}
}
You can only use this extension inside the class, as shown in useExtension, and also in the context of that class, which for instance can be used in with:
with(x) { "abc".ext() }
It's not recommended to do this, although it makes sense when writing DSLs for example.

How to specify "own type" as return type in Kotlin

Is there a way to specify the return type of a function to be the type of the called object?
e.g.
trait Foo {
fun bar(): <??> /* what to put here? */ {
return this
}
}
class FooClassA : Foo {
fun a() {}
}
class FooClassB : Foo {
fun b() {}
}
// this is the desired effect:
val a = FooClassA().bar() // should be of type FooClassA
a.a() // so this would work
val b = FooClassB().bar() // should be of type FooClassB
b.b() // so this would work
In effect, this would be roughly equivalent to instancetype in Objective-C or Self in Swift.
There's no language feature supporting this, but you can always use recursive generics (which is the pattern many libraries use):
// Define a recursive generic parameter Me
trait Foo<Me: Foo<Me>> {
fun bar(): Me {
// Here we have to cast, because the compiler does not know that Me is the same as this class
return this as Me
}
}
// In subclasses, pass itself to the superclass as an argument:
class FooClassA : Foo<FooClassA> {
fun a() {}
}
class FooClassB : Foo<FooClassB> {
fun b() {}
}
You can return something's own type with extension functions.
interface ExampleInterface
// Everything that implements ExampleInterface will have this method.
fun <T : ExampleInterface> T.doSomething(): T {
return this
}
class ClassA : ExampleInterface {
fun classASpecificMethod() {}
}
class ClassB : ExampleInterface {
fun classBSpecificMethod() {}
}
fun example() {
// doSomething() returns ClassA!
ClassA().doSomething().classASpecificMethod()
// doSomething() returns ClassB!
ClassB().doSomething().classBSpecificMethod()
}
You can use an extension method to achieve the "returns same type" effect. Here's a quick example that shows a base type with multiple type parameters and an extension method that takes a function which operates on an instance of said type:
public abstract class BuilderBase<A, B> {}
public fun <B : BuilderBase<*, *>> B.doIt(): B {
// Do something
return this
}
public class MyBuilder : BuilderBase<Int,String>() {}
public fun demo() {
val b : MyBuilder = MyBuilder().doIt()
}
Since extension methods are resolved statically (at least as of M12), you may need to have the extension delegate the actual implementation to its this should you need type-specific behaviors.
Recursive Type Bound
The pattern you have shown in the question is known as recursive type bound in the JVM world. A recursive type is one that includes a function that uses that type itself as a type for its parameter or its return value. In your example, you are using the same type for the return value by saying return this.
Example
Let's understand this with a simple and real example. We'll replace trait from your example with interface because trait is now deprecated in Kotlin. In this example, the interface VitaminSource returns different implementations of the sources of different vitamins.
In the following interface, you can see that its type parameter has itself as an upper bound. This is why it's known as recursive type bound:
VitaminSource.kt
interface VitaminSource<T: VitaminSource<T>> {
fun getSource(): T {
#Suppress("UNCHECKED_CAST")
return this as T
}
}
We suppress the UNCHECKED_CAST warning because the compiler can't possibly know whether we passed the same class name as a type argument.
Then we extend the interface with concrete implementations:
Carrot.kt
class Carrot : VitaminSource<Carrot> {
fun getVitaminA() = println("Vitamin A")
}
Banana.kt
class Banana : VitaminSource<Banana> {
fun getVitaminB() = println("Vitamin B")
}
While extending the classes, you must make sure to pass the same class to the interface otherwise you'll get ClassCastException at runtime:
class Banana : VitaminSource<Banana> // OK
class Banana : VitaminSource<Carrot> // No compiler error but exception at runtime
Test.kt
fun main() {
val carrot = Carrot().getSource()
carrot.getVitaminA()
val banana = Banana().getSource()
banana.getVitaminB()
}
That's it! Hope that helps.
Depending on the exact use case, scope functions can be a good alternative. For the builder pattern apply seems to be most useful because the context object is this and the result of the scope function is this as well.
Consider this example for a builder of List with a specialized builder subclass:
open class ListBuilder<E> {
// Return type does not matter, could also use Unit and not return anything
// But might be good to avoid that to not force users to use scope functions
fun add(element: E): ListBuilder<E> {
...
return this
}
fun buildList(): List<E> {
...
}
}
class EnhancedListBuilder<E>: ListBuilder<E>() {
fun addTwice(element: E): EnhancedListBuilder<E> {
addNTimes(element, 2)
return this
}
fun addNTimes(element: E, times: Int): EnhancedListBuilder<E> {
repeat(times) {
add(element)
}
return this
}
}
// Usage of builder:
val list = EnhancedListBuilder<String>().apply {
add("a") // Note: This would return only ListBuilder
addTwice("b")
addNTimes("c", 3)
}.buildList()
However, this only works if all methods have this as result. If one of the methods actually creates a new instance, then that instance would be discarded.
This is based on this answer to a similar question.
You can do it also via extension functions.
class Foo
fun <T: Foo>T.someFun(): T {
return this
}
Foo().someFun().someFun()