I am working on the Jupyter notebook and have been facing issues in increasing the length of the output of the Jupyter Notebook. I can see the output as follows:
I tried increasing the default length of the columns in pandas with no success. Can you please help me with it?
If you were using the typical way to view a dataframe in Jupyter (see my puzzelment about your screenshot in my comments to your original post) it would be things like this:
adapted from answer to 'Pretty-print an entire Pandas Series / DataFrame'
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
display(df)
(Note that will work with the text-based viewing, too. Note it uses print(df) in the answer to 'Pretty-print an entire Pandas Series / DataFrame'.
Adjust the 'display.max_colwidth' if you want the entire column text to show:
with pd.option_context('display.max_rows', None, 'display.max_columns', None,'display.max_colwidth', -1):
display(df)
(If you prefer text like you posted, replace display() with print()
Generally with the solutions above the view window in Jupyter will get scrollbars so you can navigate to view all still.
You can also set the number of rows to show to be lower to save space, see example here.
You may also be interested in Pandas dataframe hide index functionality? or Using python / Jupyter Notebook, how to prevent row numbers from printing?.
As pointed out here, setting some some global options is covered in the Pandas Documentation for top-level options.
For display() to work these days you don't need to do anything extra. But if your are using old Jupyter or it doesn't work then try adding towards the top of your notebook file and running the following as a cell first:
from IPython.display import display
I am trying to configure a template for creating plots for my test data. Therefore I need to say I am pretty new to that in python, and I already googled quite a lot regarding my question but what I found could not help me. I have a excel table with data in two columns, which I want to plot against each other. My code looks as follows
file='C:/Documents/Test/test_file.xlsx'
df1=pd.read_Excel(file,sheet_name='sheet1',header=0, engine="openpyxl")
plt.figure()
sns.lineplot(data=df1[:,:],x="eps",y="sigma",sort=False,linewidth=0.8)
The excel has -as mentioned a header with eps and sigma as x and y values. The values following are floats, when I check the datatype with df1.dtypes, the result is 'float64' So has anyone an idea what is not working? I get the error 'ufunc 'isfinite' not supported for the input types'
Plotting data from excel with panda and seaborn against each other and save the image.
This might be a library issue. I've been running into the same problem with example datasets and even a very simple:
sns.lineplot(x=[1], y=[1])
I'll update if I find a solution.
Edit: There seems to be an issue with Numpy that is causing this issue with Seaborn. Solution is to downgrade Numpy to 1.23 until 1.24.1 is released.
https://github.com/mwaskom/seaborn/issues/3192
I cannot find anything about this type of tensorflow dataset: FlatMapDataset.
I came over it by using Hugginface traformer library. The glue_convert_examples_to_features functions returns it.
What is it? And what do I do with it?
I am trying to work with the quite recently published tensorflow_dataset API to train a Keras model on the Open Images Dataset. The dataset is about 570 GB in size. I downloaded the data with the following code:
import tensorflow_datasets as tfds
import tensorflow as tf
open_images_dataset = tfds.image.OpenImagesV4()
open_images_dataset.download_and_prepare(download_dir="/notebooks/dataset/")
After the download was complete, the connection to my jupyter notebook somehow interrupted but the extraction seemed to be finished as well, at least all downloaded files had a counterpart in the "extracted" folder. However, I am not able to access the downloaded data now:
tfds.load(name="open_images_v4", data_dir="/notebooks/open_images_dataset/extracted/", download=False)
This only gives the following error:
AssertionError: Dataset open_images_v4: could not find data in /notebooks/open_images_dataset/extracted/. Please make sure to call dataset_builder.download_and_prepare(), or pass download=True to tfds.load() before trying to access the tf.data.Dataset object.
When I call the function download_and_prepare() it only downloads the whole dataset again.
Am I missing something here?
Edit:
After the download the folder under "extracted" has 18 .tar.gz files.
This is with tensorflow-datasets 1.0.1 and tensorflow 2.0.
The folder hierarchy should be like this:
/notebooks/open_images_dataset/extracted/open_images_v4/0.1.0
All the datasets have a version. Then the data could be loaded like this.
ds = tf.load('open_images_v4', data_dir='/notebooks/open_images_dataset/extracted', download=False)
I didn't have open_images_v4 data. I put cifar10 data into a folder named open_images_v4 to check what folder structure tensorflow_datasets was expecting.
The solution to this was to also use the "data_dir" parameter when initializing the dataset:
builder = tfds.image.OpenImagesV4(data_dir="/raid/openimages/dataset")
builder.download_and_prepare(download_dir="/raid/openimages/dataset")
This way the dataset is donwloaded and extracted in the same directory. Before, it was (for me unnoticeably) extracting to the default directory, which is under /home/.../. That's what caused the error, as there wasn't enough space left under my home directory.
After the extraction, the folder structure is exactly as Manoj-Mohan described.
Above solution haven't worked for me.
builder = tfds.builder(name='folder_name', data_dir=data_dir)
builder.download_and_prepare(download_dir="/home/...")
ds = builder.as_dataset()
After following this tutorial on summaries and TensorBoard, I've been able to successfully save and look at data with TensorBoard. Is it possible to open this data with something other than TensorBoard?
By the way, my application is to do off-policy learning. I'm currently saving each state-action-reward tuple using SummaryWriter. I know I could manually store/train on this data, but I thought it'd be nice to use TensorFlow's built in logging features to store/load this data.
As of March 2017, the EventAccumulator tool has been moved from Tensorflow core to the Tensorboard Backend. You can still use it to extract data from Tensorboard log files as follows:
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
event_acc = EventAccumulator('/path/to/summary/folder')
event_acc.Reload()
# Show all tags in the log file
print(event_acc.Tags())
# E. g. get wall clock, number of steps and value for a scalar 'Accuracy'
w_times, step_nums, vals = zip(*event_acc.Scalars('Accuracy'))
Easy, the data can actually be exported to a .csv file within TensorBoard under the Events tab, which can e.g. be loaded in a Pandas dataframe in Python. Make sure you check the Data download links box.
For a more automated approach, check out the TensorBoard readme:
If you'd like to export data to visualize elsewhere (e.g. iPython
Notebook), that's possible too. You can directly depend on the
underlying classes that TensorBoard uses for loading data:
python/summary/event_accumulator.py (for loading data from a single
run) or python/summary/event_multiplexer.py (for loading data from
multiple runs, and keeping it organized). These classes load groups of
event files, discard data that was "orphaned" by TensorFlow crashes,
and organize the data by tag.
As another option, there is a script
(tensorboard/scripts/serialize_tensorboard.py) which will load a
logdir just like TensorBoard does, but write all of the data out to
disk as json instead of starting a server. This script is setup to
make "fake TensorBoard backends" for testing, so it is a bit rough
around the edges.
I think the data are encoded protobufs RecordReader format. To get serialized strings out of files you can use py_record_reader or build a graph with TFRecordReader op, and to deserialize those strings to protobuf use Event schema. If you get a working example, please update this q, since we seem to be missing documentation on this.
I did something along these lines for a previous project. As mentioned by others, the main ingredient is tensorflows event accumulator
from tensorflow.python.summary import event_accumulator as ea
acc = ea.EventAccumulator("folder/containing/summaries/")
acc.Reload()
# Print tags of contained entities, use these names to retrieve entities as below
print(acc.Tags())
# E. g. get all values and steps of a scalar called 'l2_loss'
xy_l2_loss = [(s.step, s.value) for s in acc.Scalars('l2_loss')]
# Retrieve images, e. g. first labeled as 'generator'
img = acc.Images('generator/image/0')
with open('img_{}.png'.format(img.step), 'wb') as f:
f.write(img.encoded_image_string)
You can also use the tf.train.summaryiterator: To extract events in a ./logs-Folder where only classic scalars lr, acc, loss, val_acc and val_loss are present you can use this GIST: tensorboard_to_csv.py
Chris Cundy's answer works well when you have less than 10000 data points in your tfevent file. However, when you have a large file with over 10000 data points, Tensorboard will automatically sampling them and only gives you at most 10000 points. It is a quite annoying underlying behavior as it is not well-documented. See https://github.com/tensorflow/tensorboard/blob/master/tensorboard/backend/event_processing/event_accumulator.py#L186.
To get around it and get all data points, a bit hacky way is to:
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
class FalseDict(object):
def __getitem__(self,key):
return 0
def __contains__(self, key):
return True
event_acc = EventAccumulator('path/to/your/tfevents',size_guidance=FalseDict())
It looks like for tb version >=2.3 you can streamline the process of converting your tb events to a pandas dataframe using tensorboard.data.experimental.ExperimentFromDev().
It requires you to upload your logs to TensorBoard.dev, though, which is public. There are plans to expand the capability to locally stored logs in the future.
https://www.tensorflow.org/tensorboard/dataframe_api
You can also use the EventFileLoader to iterate through a tensorboard file
from tensorboard.backend.event_processing.event_file_loader import EventFileLoader
for event in EventFileLoader('path/to/events.out.tfevents.xxx').Load():
print(event)
Surprisingly, the python package tb_parse has not been mentioned yet.
From documentation:
Installation:
pip install tensorflow # or tensorflow-cpu pip install -U tbparse # requires Python >= 3.7
Note: If you don't want to install TensorFlow, see Installing without TensorFlow.
We suggest using an additional virtual environment for parsing and plotting the tensorboard events. So no worries if your training code uses Python 3.6 or older versions.
Reading one or more event files with tbparse only requires 5 lines of code:
from tbparse import SummaryReader
log_dir = "<PATH_TO_EVENT_FILE_OR_DIRECTORY>"
reader = SummaryReader(log_dir)
df = reader.scalars
print(df)