How to add additional methods to autocomplete in IntelliJ - intellij-idea

When I'm coding using IntelliJ I frequently use the auto-completion as a way of speeding up my coding, however there are certain methods that it doesn't seem to suggest. One example is Collectors.toMap - it will suggest toSet, toColletion and toList when I type .collect but never toMap which means I need to type more.
As a 1st question, can I fix this behaviour? As a more general question, can I add my own custom code to be auto completed in these types of circumstance?

One trick which helps me out every time while trying to collect the stream is having a placeholder variable with the expected type. Something like:
// just a placeholder variable with proper types, which I can remove later!
Map<String, String> tempMapVariable = someCollection.stream()
.collect(
// here it will suggest the .toMap(...)
Collectors.toMap(i -> i.getKey(), i -> getValue())
);
Set<String> tempSetVariable = someCollection.stream()
.map(SomeCollection::mapperFn)
.collect(
// here it will suggest the .toSet()
Collectors.toSet()
);

Related

Should I use an explicit return type for a String variable in Kotlin?

In Kotlin, We can declare a string read-only variable with type assignment and without type assignment (inferred) as below.
val variable_name = "Hello world"
or
val variable_name: String = "Hello world"
I'm trying to figure out what is the best in Kotlin and why it is the best way. Any idea?
If this is a public variable, using an explicit return type is always a good idea.
It can make the code easier to read and use. This is why your IDE probably shows the return type anyway, even when you omit it from the code. It's less important for simple properties like yours where the return type is easy to see at a glance, but when the property or method is more than a few lines it makes much more difference.
It prevents you from accidentally changing the type. With an explicit return type, if you change the contents of the property so that it doesn't actually return the correct type, you'll get an immediate compile error in that method or property. With an implicit type, if you change the contents of the method you could see cascading errors throughout your code base, making it hard to find the source of the error.
It can actually speed up your IDE! See this blog post from the JetBrains team for more information.
For private variables, explicit return types are much less important, because the above points don't generally apply.
Personally either one works and for me nothing is wrong, but I would choose the later if this is a team project, where project size increase and feature inheritance(members leaving, new hiring or worse shuffling people) is probable. Also I consider the later as more of a courtesy.
There are situations where regardless of the dogma every member follows, such as clean architecture, design-patterns or clean-coding, bloated codes or files are always expected to occur in such big projects occasionally, so the later would help anyone especially new members to easily recognize at first glance what data type they are dealing with.
Again this this is not about right or wrong, as kotlin is created to be idiomatic, I think this is Autoboxing, it was done in kotlin for codes to be shorter and cleaner as few of its many promise, but again regardless of the language, sometimes its the developer's discretion to have a readable code or not.
This also applies with function return types, I always specify my function return types just so the "new guy" or any other developer will understand my function signatures right away, saving him tons of brain cells understanding whats going on.
fun isValidEmail() : Boolean = if (condition) true else false
fun getValidatedPerson(): Person = repository.getAuthenticatedPersonbyId(id)
fun getCurrentVisibleScreen(): #Composable ()-> Unit = composables.get()
fun getCurrentContext(): Context if (isActivity) activityContext else applicationContext

Kotlinpoet: Ommitting redundant `public` modifier from generated types and properties

Is there any way to omit the redundant public modifier from types and properties generated via
KotlinPoet's TypeSpec.Builder and PropertySpec.Builder respectively?
Egor's answer above is the correct one. There is no way to omit redundant public modifiers in KotlinPoet, and there is good reason for that.
However, all those (unnecessary in my case) warnings were getting to my nerves and I had to find some way to get rid of them. What I finally came up with, is to suppress them in KotlinPoet-generated files.
Here's an extension for FileSpec.Builder that enables you to suppress warnings for a particular generated file.
internal fun FileSpec.Builder.suppressWarningTypes(vararg types: String) {
if (types.isEmpty()) {
return
}
val format = "%S,".repeat(types.count()).trimEnd(',')
addAnnotation(
AnnotationSpec.builder(ClassName("", "Suppress"))
.addMember(format, *types)
.build()
)
}
And here's an example of how to use it to get rid of the redundant visibility modifiers warning in generated files:
val fileBuilder = FileSpec.builder(myPackageName, myClassName)
fileBuilder.suppressWarningTypes("RedundantVisibilityModifier")
The extension also supports suppressing more than one warning types:
fileBuilder.suppressWarningTypes("RedundantVisibilityModifier", "USELESS_CAST")
Please note that I'm in no way suggesting that you should get rid of ALL the warnings that bother you in your generated code! Use this code carefully!
No, and no plans to support such functionality. If it's important for your use case to not have explicit public modifiers, a good solution would be to post-process the output with a script that removes them.

Using Kotlin's scope functions in not exhaustive with / when

I'm pretty new with Kotlin and I'm trying to figure out Kotlin's scope functions.
My code looks like this:
with(something) {
when {
equals("test") -> var1 = "test123"
startsWith("test2") -> var2 = "test456"
contains("test3") -> myNullableVar?.let { it.var3 = "test789" }
}
}
So before I entered the third check with the .let function my with function does not need to be exhaustive (I'm not returning something, I'm only doing assignments). In my third check I'm using .let as a null-check ... but only for an assignment of it.var3 (if it is not null). I don't need to return anything while I know that Kotlin's .let function returns the result of the body by standard.
Nevertheless now my with/when needs to be exhaustive otherwise it won't compile anymore.
This got me thinking and trying out different things. I found these ways to solve this issue:
I can add an else to my with/when so it becomes exhaustive but actually I don't need an else and I don't want to use it in this case.
I can add another .let, so it looks like this: myNullableVar?.let { it.var3 = "test789" }.let{} .... but this looks kinda hacky to me. Is it supposed to work like this?
Use If(xy==null){...}else{...} stuff but I thought I can solve this with Kotlin differently
Because I'm new with Kotlin I'm not really sure how to handle this case properly. I would probably just go with my second idea because "it works". Or should I don't use .let for null-checks? Add another empty .let{}? Or did I not get the null-safety concept at all? I feel a little bit lost here. Thanks for any help.
This seems to be an unfortunate combination of features…
A when can be non-exhaustive only when it doesn't return a value.  The problem is that the with() function does return a value.  And since the when is at the bottom, its value is what gets returned, so in this case it must be exhaustive.
So why doesn't it insist on an else branch even if you omit the "test3" branch?  That's because assignments don't yield a value.  (They evaluate to Unit, which is Kotlin's special type for functions that don't return a useful value.)  If every branch gives Unit, then Kotlin seems* to be happy to infer a default branch also giving Unit.
But the "test3" branch returns something else — the type of myNullableVar.  So what type does the when infer?  The nearest common supertype of that type and Unit, which is the top type Any?.  And now it needs an explicit else branch!
So what to do?
You've found a few options, none of which is ideal.  So here are a few more, ditto!
You could return an explicit Unit from that branch:
contains("test3") -> { myNullableVar?.let { it.var3 = "test789" }; Unit }
You could return an explicit Unit from the with():
contains("test3") -> myNullableVar?.let { it.var3 = "test789" }
}
Unit
}
You could give an explicit type for the with(). (It has two type parameters, so you'd need to give both, starting with the type of its parameter):
with<String, Unit>("abc") {
I haven't found a single obvious best answer, I'm afraid…
And to answer your last question: yes, ?.let{ is perfectly idiomatic and common for null checks.  In this particular case, replacing it with an if happens to solve the type problem:
contains("test3") -> { if (myNullableVar != null) myNullableVar.var3 = "test789" }
But as well as being long-winded, if myNullableVar is a property and not a local variable, then it opens up a race condition (what if another thread sets it to null in between the test and the assignment?) so the compiler would complain — which is exactly why people use let instead!
(* I can't find a reference for this behaviour.  Is there an official word on it?)

How should I form a list property type with my own type

I am trying to form below final kotlin code
val participants: List<AbstractParty>
I tried to use below code in kotlinpoet but it shows error, I think it is not correct, but don't know how should I fix it. Any one can help? Thanks.
PropertySpec.builder("participants", List<ClassName("AbstractParty">)
Depending on whether you have a reference to a class or if you need to create its name from Strings, you can do either this:
PropertySpec.builder("participants",
ParameterizedTypeName.get(List::class, AbstractParty::class)
).build()
Or this:
PropertySpec.builder("participants",
ParameterizedTypeName.get(
List::class.asClassName(),
ClassName("some.pckg.name", "AbstractParty"))
).build()
A hint to finding out these sorts of things: KotlinPoet has pretty extensive tests, you can find examples of almost anything in there.
You can use parameterizedBy() extension:
PropertySpec.builder(
"participants",
List::class.asClassName().parameterizedBy(ClassName("some.pckg.name", "AbstractParty")
).build()
https://square.github.io/kotlinpoet/1.x/kotlinpoet/kotlinpoet/com.squareup.kotlinpoet/-parameterized-type-name/-companion/parameterized-by.html

Why use Arrow's Options instead of Kotlin nullable

I was having a look at the Arrow library found here. Why would ever want to use an Option type instead of Kotlin's built in nullables?
I have been using the Option data type provided by Arrow for over a year, and there at the beginning, we did the exact same question to ourselves. The answer follows.
Option vs Nullable
If you compare just the option data type with nullables in Kotlin, they are almost even. Same semantics (there is some value or not), almost same syntax (with Option you use map, with nullables you use safe call operator).
But when using Options, you enable the possibility to take benefits from the arrow ecosystem!
Arrow ecosystem (functional ecosystem)
When using Options, you are using the Monad Pattern. When using the monad pattern with libraries like arrow, scala cats, scalaz, you can take benefits from several functional concepts. Just 3 examples of benefits (there is a lot more than that):
1. Access to other Monads
Option is not the only one! For instance, Either is a lot useful to express and avoid to throw Exceptions. Try, Validated and IO are examples of other common monads that help us to do (in a better way) things we do on typical projects.
2. Conversion between monads + abstractions
You can easily convert one monad to another. You have a Try but want to return (and express) an Either? Just convert to it. You have an Either but doesn't care about the error? Just convert to Option.
val foo = Try { 2 / 0 }
val bar = foo.toEither()
val baz = bar.toOption()
This abstraction also helps you to create functions that doesn't care about the container (monad) itself, just about the content. For example, you can create an extension method Sum(anyContainerWithBigDecimalInside, anotherContainerWithBigDecimal) that works with ANY MONAD (to be more precise: "to any instance of applicative") this way:
fun <F> Applicative<F>.sum(vararg kinds: Kind<F, BigDecimal>): Kind<F, BigDecimal> {
return kinds.reduce { kindA, kindB ->
map(kindA, kindB) { (a, b) -> a.add(b) }
}
}
A little complex to understand, but very helpful and easy to use.
3. Monad comprehensions
Going from nullables to monads is not just about changing safe call operators to map calls. Take a look at the "binding" feature that arrow provides as the implementation of the pattern "Monad Comprehensions":
fun calculateRocketBoost(rocketStatus: RocketStatus): Option<Double> {
return binding {
val (gravity) = rocketStatus.gravity
val (currentSpeed) = rocketStatus.currentSpeed
val (fuel) = rocketStatus.fuel
val (science) = calculateRocketScienceStuff(rocketStatus)
val fuelConsumptionRate = Math.pow(gravity, fuel)
val universeStuff = Math.log(fuelConsumptionRate * science)
universeStuff * currentSpeed
}
}
All the functions used and also the properties from rocketStatus parameter in the above example are Options. Inside the binding block, the flatMap call is abstracted for us. The code is a lot easier to read (and write) and you don't need to check if the values are present, if some of them is not, the computation will stop and the result will be an Option with None!
Now try to imagine this code with null verifications instead. Not just safe call operators but also probably if null then return code paths. A lot harder isn't it?
Also, the above example uses Option but the true power about monad comprehensions as an abstraction is when you use it with monads like IO in which you can abstract asynchronous code execution in the exact same "clean, sequential and imperative" way as above :O
Conclusion
I strongly recommend you to start using monads like Option, Either, etc as soon as you see the concept fits the semantics you need, even if you are not sure if you will take the other big benefits from the functional ecosystem or if you don't know them very well yet. Soon you'll be using it without noticing the learning-curve. In my company, we use it in almost all Kotlin projects, even in the object-oriented ones (which are the majority).
Disclaimer: If you really want to have a detailed talk about why Arrow is useful, then please head over to https://soundcloud.com/user-38099918/arrow-functional-library and listen to one of the people who work on it. (5:35min)
The people who create and use that library simple want to use Kotlin differently than the people who created it and use "the Option datatype similar to how Scala, Haskell and other FP languages handle optional values".
This is just another way of defining return types of values that you do not know the output of.
Let me show you three versions:
nullability in Kotlin
val someString: String? = if (condition) "String" else null
object with another value
val someString: String = if (condition) "String" else ""
the Arrow version
val someString: Option<String> = if (condition) Some("String") else None
A major part of Kotlin logic can be to never use nullable types like String?, but you will need to use it when interopting with Java. When doing that you need to use safe calls like string?.split("a") or the not-null assertion string!!.split("a").
I think it is perfectly valid to use safe calls when using Java libraries, but the Arrow guys seem to think different and want to use their logic all the time.
The benefit of using the Arrow logic is "empowering users to define pure FP apps and libraries built atop higher order abstractions. Use the below list to learn more about Λrrow's main features".
One thing other answers haven't mentioned: you can have Option<Option<SomeType>> where you can't have SomeType??. Or Option<SomeType?>, for that matter. This is quite useful for compositionality. E.g. consider Kotlin's Map.get:
abstract operator fun get(key: K): V?
Returns the value corresponding to the given key, or null if such a key is not present in the map.
But what if V is a nullable type? Then when get returns null it can be because the map stored a null value for the given key or because there was no value; you can't tell! If it returned Option<V>, there wouldn't be a problem.