Proper way to operate collections in StateFlow - kotlin

I'm creating MutableStateFlow like this:
val intSet = MutableStateFlow(HashSet<Int>())
And in some moment later I want to update collection in this flow:
intSet.value.add(0)
And this doesn't seem to work (the collection updates, but observers are not notified).
The way that I found it working:
val list = HashSet<Int>(intSet.value)
list.add(0)
intSet.value = list
But it creates copy of the collection, so it doesn't look proper for me. Is there any simpler way to update collection in StateFlow?

MutableFlow does not check for changes in the content of collections. Only when the collection reference has changed it will emit the change.
Use immutable Set and use the += operator to add new elements. This will basically, create new Set and will trigger the change.
val intSetFlow = MutableStateFlow(setOf<Int>())
intSetFlow.value += 0

Related

Kotlin modifying dataclass object key from map changes the reference after modifying variable

I have a MutableMap that its keys are objects from a DataClass (User dataclass), and the values are arrays from other Dataclass (Dog dataclass). If i have a variable with a User object, and i put it in the MutableMap and i test if the map contains the User, it says that is true. But after putting the user in the MutableMap if i change one of the attributes of the User object using the variable that holds the User object, the Map says that it doesnt contains the user object.
This is an example
data class User(
var name: String,
var project: String,
)
data class Dog(
var kind: String
)
fun main(args: Array<String>) {
var mapUserDogs: MutableMap<User, MutableList<Dog>> = mutableMapOf()
var userSelected = User("name2", "P2")
mapUserDogs.put(
User("name1", "P1"),
mutableListOf(Dog("R1"), Dog("R2"))
)
mapUserDogs.put(
userSelected,
mutableListOf(Dog("R21"), Dog("R31"))
)
println(userSelected)
println(mapUserDogs.keys.toString())
println(mapUserDogs.contains(userSelected))
println(mapUserDogs.values.toString())
println("\n")
userSelected.name = "Name3"
println(userSelected)
println(mapUserDogs.keys.toString())
println(mapUserDogs.contains(userSelected))
println(mapUserDogs.values.toString())
}
The prints statements show this:
User(name=name2, project=P2)
[User(name=name1, project=P1), User(name=name2, project=P2)]
true
[[Dog(kind=R1), Dog(kind=R2)], [Dog(kind=R21), Dog(kind=R31)]]
User(name=Name3, project=P2)
[User(name=name1, project=P1), User(name=Name3, project=P2)]
false
[[Dog(kind=R1), Dog(kind=R2)], [Dog(kind=R21), Dog(kind=R31)]]
Process finished with exit code 0
But it doesn't make sense. Why the map says that it doesn't contains the user object if its clear that it still holds the reference to it after being modified?
User(name=Name3, project=P2)
[User(name=name1, project=P1), User(name=Name3, project=P2)]
The user in the keys collection was also changed when i modified the userSelected variable, so now the object has it attribute name as "Name3" in both the variable and in the Map keys, but it still says that it doesnt contains it.
What can i do so that i can change the attributes in the userSelected object and the Map still return true when using the "contains" method?. And doing the same process in reverse shows the same. If i get from the map the user and i modify it, the userVariable is also modified but if i later test if the map contains the userVariable, it says false.
What can i do so that i can change the attributes in the userSelected object and the Map still return true when using the "contains" method?
There is nothing you can do that preserves both your ability to look up the entry in the map and your ability to modify the key.
Make your data class immutable (val instead of var, etc.), and when you need to change a mapping, remove the old key and put in the new key. That's really the only useful thing you can do.
To add to Louis Wasserman's correct answer:
This is simply the way that maps work in Kotlin: their contract requires that keys don't change significantly once stored. The docs for java.util.Map* spell this out:
Note: great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an object is changed in a manner that affects equals comparisons while the object is a key in the map.
The safest approach is to use only immutable objects as keys. (Note that not just the object itself, but any objects it references, and so on, must all be immutable for it to be completely safe.)
You can get away with mutable keys as long as, once the key is stored in the map, you're careful never to change anything that would affect the results of calling equals() on it. (This may be appropriate if the object needs some initial set-up that can't all be done in its constructor, or to avoid having both mutable and immutable variants of a class.) But it's not easy to guarantee, and leaves potential problems for future maintenance, so full immutability is preferable.
The effects of mutating keys can be obvious or subtle. As OP noticed, mappings may appear to vanish, and maybe later reappear. But depending on the exact map implementation, it may cause further problems such as errors when fetching/adding/removing unrelated mappings, memory leaks, or even infinite loops. (“The behaviour… is not specified” means that anything can happen!)
What can i do so that i can change the attributes in the userSelected object and the Map still return true when using the "contains" method?
What you're trying to do there is to change the mapping. If you store a map from key K1 to value V, and you mutate the key to hold K2, then you're effectively saying “K1 no longer maps to V; instead, K2 now maps to V.”
So the correct way to do that is to remove the old mapping, and then add the new one. If the key is immutable, that's what you have to do — but even if the key is mutable, you must remove the old mapping before changing it, and then add a new mapping after changing it, so that it never changes while it's stored in the map.
(* The Kotlin library docs don't address this, unfortunately — IMHO this is one of many areas in which they're lacking, as compared to the exemplary Java docs…)
That happens because data classes in Kotlin are compared by value, unlike regular classes which are compared by reference. When you use a data class as a key, the map gets searched for a User with the same string values for the name and project fields, not for the object itself in memory.
For example:
data class User(
var name: String,
var project: String,
)
val user1 = User("Daniel", "Something Cool")
val user2 = User("Daniel", "Something Cool")
println(user1 == user2) // true
works because, even though they are different objects (and thus different references), they have the same name and project values.
However, if I were to do this:
user1.name = "Christian"
println(user1 == user2) // false
the answer would be false because they don't share the same value for all of their fields.
If I made User a standard class:
class User(
var name: String,
var project: String,
)
val user1 = User("Daniel", "Something Cool")
val user2 = User("Daniel", "Something Cool")
println(user1 == user2) // false
the answer would be false because they are different references, even though they share the same values.
For your code to work the way you want, make User a regular class instead of a data class.
That's the key difference between regular classes and data classes: a class is passed by reference, a data class is passed by value. Data classes are nothing more than collections of values with (optionally) some methods attached to them, classes are individual objects.

What is the difference between mutableStateOf and mutableStateListOf?

While working with a ViewModel and a List stored in there, I usually followed this approach:
var characteristics by mutableStateOf(listOf<Characteristic>())
Then, I could assign data to the List or modify it, and the UI would recompose properly:
characteristics = issuesRepository.getCharacteristics()
characteristics = characteristics.plus(newCharacteristic)
However, I recently stumbled across several approaches containing the keyword mutableStateListOf(), and it then seems to be a common practice to split a List into two separate variables, like this:
private val _characteristic = mutableStateListOf<Characteristic>()
val characteristic: List<Characteristic> = _characteristic
How do these approaches differ, and is one of those considered best-practice or as a cleaner approach?
Using mutableStateOf you are creating an observable object. So, the recomposition will happen just if you assign a new instance to this state.
Let's say that you want that recomposition happens after add a new item to the list. In this case, you need to create a copy of this list, add the elemento to this copied list, and then assign the copied list to the state.
The mutableStateListOf creates an observable list. All operations you've done in this list (add, remove, update) will cause a recomposition.

Kotlin: val mutableList vs var immutableList. When to use which?

We are encouraged to have immutable variables as much as we can.
But sometimes when I have to modify a list I start to wonder which approach would be better for current situation...
val mutableList = mutableListOf()
// where I can just .add() / .remove() accordingly
or
var immutableList = listOf()
// where I can create a new list (using filter or `+`) each time a change is made
I guess there are different scenarios one is preferred over the other.
Hence I would like to know when one should be used over the other
val -> You could think that you can't reassign for the variable.
//that is ok
var a:Int = 1
a=2
//Even you can reassign but you can't change its type
a= "string" //that's wrong
//that is wrong
val b:Int = 1
b = 2
ListOf -> You could think that you can't insert/delete/alter any element in the list
(can't do anything to the content of the list)
var list:List<Int> = listOf(1,2,3,4) //[1,2,3,4]
//you can read list
list.get(0)
list[0]
//but you can't change(/write) the content of the list (insert/delete/alter)
list.set(0, 100)
list.add(5)
list.removeAt(0)
var mutableList:MutableList<Int> = mutableListOf(1,2,3,4) //[1,2,3,4]
//you can read and write
mutableList.get(0)
mutableList.set(0, 100) //[100,2,3,4]
mutableList.add(5) //[100,2,3,4,5]
mutableList.removeAt(0) //[2,3,4,5]
SO
combine both of them, you will get four cases
Case 1: var mutableList:MutableList = mutableListOf(1,2,3,4)
//you can reassign
mutableList = mutableListOf(4,5,6,7) //[4,5,6,7]
//you can alter the content
mutableList.set(0, 100) //[100,5,6,7]
mutableList.add(8) //[100,5,6,7,8]
mutableList.removeAt(0) //[5,6,7,8]
Case 2: val mutableList:MutableList = mutableListOf(1,2,3,4)
//you can't reassign
mutableList = mutableListOf(4,5,6,7) //that's wrong
//you can alter the content
mutableList.set(0, 100) //[100,2,3,4]
mutableList.add(8) //[100,2,3,4,8]
mutableList.removeAt(0) //[2,3,4,8]
Case 3: var list:List = ListOf(1,2,3,4)
//you can reassign
list= ListOf(4,5,6,7) //[4,5,6,7]
//you can't alter the content
list.set(0, 100) //that's wrong
list.add(8) //that's wrong
list.removeAt(0) //that's wrong
Case 4: val list:List = ListOf(1,2,3,4)
//you can't reassign
list= ListOf(4,5,6,7) //that's wrong
//you can't alter the content
list.set(0, 100) //that's wrong
list.add(8) //that's wrong
list.removeAt(0) //that's wrong
//the only thing you can do is Read
list.get(0) //return 1
list[0] //return 1
Mutable and immutable list increase the design clarity of the model.
This is to force developer to think and clarify the purpose of collection.
If the collection will change as part of design, use mutable collection
If model is meant only for viewing, use immutable list
Purpose of val and var is different from immutable and mutable list.
val and var keyword talk about the how a value/reference of a variable should be treated.
var - value/reference assigned to a variable can be changed at any point of time.
val - value/reference can be assigned only once to a variable and can't be changed later point in the execution.
It is completely valid in Kotlin to assign mutable list to a val and add element to it.
val a = mutableListOf(1,2,3,4)
a.add(5)
println(a)
will output
[1, 2, 3, 4, 5]
I guess there are different scenarios one is preferred over the other. Hence would like to get to know when one should be used over the other etc.
There are several reasons why immutable objects are often preferable:
They encourage functional programming, where state is not mutated, but passed on to the next function which creates a new state based on it. This is very well visible in the Kotlin collection methods such as map, filter, reduce, etc.
A program without side effects is often easier to understand and debug (you can be sure that the value of an object will always be the one at its definition).
In multithreaded programs, immutable resources cannot cause race conditions, as no write access is involved.
You have also some disadvantages:
Copying entire collections just to add/remove a single element is computationally expensive.
In some cases, immutability can make the code more complex, when you tediously need to change single fields. In Kotlin, data classes come with a built-in copy() method where you can copy an instance, while providing new values for only some of the fields.
Which one you end up using depends on the use case at hand. For data classes (bundling a few attributes together), it's often a good idea to stick to immutability. For collections, if you use immutable ones just to modify their copies and re-assign the reference pointing to them all the time, you can as well use mutable ones. If you share a collection to many parts of your application that depend on the state remaining constant, use immutable.
Keep in mind that Kotlin collections have different concepts:
Mutable collections: MutableList<T>, MutableSet<T>, MutableMap<T>
These can be modified at any time.
Read-only collections: List<T>, Set<T>, Map<T>
These provide a read-only view on the collection, i.e. the collection cannot be modified through that reference. It gives no guarantee about immutability though (another mutable reference to it can still exist and used for modification).
(Proposed, not yet part of Kotlin)
Immutable collections: ImmutableList<T>, ImmutableSet<T>, ImmutableMap<T>
These would guarantee true immutability, and provide patterns to build new modified collections based on them. See the Proposal for details.

java8 make immutable List after removing null elements

I know Arrays.asList creates immutable List. My requirement is to create immutable List<Student> with no null elements in it. So I am creating new ArrayList() first then removing null elements using java 8 filters as shown below:
List<Student> list = new ArrayList<>();
list.add(makeStudent("ram", 'M'));
list.add(makeStudent("sathya", 'F'));
list.add(makeStudent(null, 'M'));
list.add(makeStudent("sri", 'M'));
list = list.stream().filter(s -> s != null).collect(Collectors.toList());
Below is the makeStudent method, it returns null if name is not available:
private Student makeStudent(String name, char gender) {
return null != name ? new Student(name, gender) : null;
}
I thought Collectors.toList() will create immutable. But I was wrong. The list is still mutable here. Is there a better way to make the list clean (remove null) and immutable in single line using java 8?
You might rewrite your code to this one:
list = list.stream()
.filter(Objects::nonNull)
.collect(Collectors.collectingAndThen(Collectors.toList(), Collections::unmodifiableList));
Collector collectingAndThen allow you to wrap result collection
Even though you specified Java 8, here is how you can filter an existing List into a fully immutable List that you're looking for with Java 9:
list = list.stream()
.filter(Objects::nonNull)
.collect(Collectors.toCollection(List::of));
using Collections.unmodifiableList to wrap the List collected by the stream.
list = Collections.unmodifiableList(list.stream()
.filter(Objects::nonNull)
.collect(Collectors.toList()));
the Collectors.toList() method do the things like as reduce:
//pseudo-code
Collectors.reduce(ArrayList::new, List::add, List::addAll)
IF you passing an immutable List to reduce you can't collect any items from the stream into the List since it is immutable.
You can either use Collections.unmodifiableList as suggested in other answers or you can also convert stream to array and then use Arrays.asList.
list = Arrays.asList(list.stream()
.filter(Objects::nonNull)
.toArray(Student[]::new));

Create a "clone" of this object, not point to it

Let's say I got a list called
myFirstList
And then I want to create a copy of that list so I can do some tweaks of my own. So I do this:
mySecondList = myFirstList
mySecondList.doTweaks
But I noticed that the tweaks also affect the myFirstList object! I only want the tweaks to affect the second one...
And afterwards I will want to completely delete mySecondList, so I do mySecondList = Nothing and I'm good, right?
Adam Rackis, I don't like your "Of course it does", because it is not at all obvious.
If you have a string variable that you assign to another string variabe, you do not change them both when making changes to one of them. They do not point to the same physical piece of memory, so why is it obvious that classes do?
Also, the thing is not even consistent. In the following case, you will have all elements in the array pointing at the same object (they all end up with the variable Number set to 10:
SourceObject = New SomeClass
For i = 1 To 10
SourceObject.Number = i
ObjectArray.Add = SourceObject
Next i
BUT, the following will give you 10 different instances:
For i = 1 To 10
SourceObject = New SomeClass
SourceObject.Number = i
ObjectArray.Add = SourceObject
Next i
Apparently the scope of the object makes a difference, so it is not at all obvious what happens.
Here is how you do it:
'copy one object to another via reflection properties
For Each p As System.Reflection.PropertyInfo In originalobject.GetType().GetProperties()
If p.CanRead Then
clone.GetType().GetProperty(p.Name).SetValue(clone, p.GetValue(OriginalObject, Nothing))
End If
Next
in some cases when the clone object got read-only properties you need to check that first.
For Each p As System.Reflection.PropertyInfo In originalobject.GetType().GetProperties()
If p.CanRead AndAlso clone.GetType().GetProperty(p.Name).CanWrite Then
clone.GetType().GetProperty(p.Name).SetValue(clone, p.GetValue(OriginalObject, Nothing))
End If
Next
Since you have not divulged the type of item that you are storing n your list, I assume it's something that's implementing IClonable (Otherwise, if you can, implement IClonable, or figure out a way to clone individual item in the list).
Try something like this
mySecondList = myFirstList.[Select](Function(i) i.Clone()).ToList()
But I noticed that the tweaks also
affect the myFirstList object! I only
want the tweaks to affect the second
one...
Of course it does. Both variables are pointing to the same object in memory. Anything you do to the one, happens to the other.
You're going to need to do either a deep clone, or a shallow one, depending on your requirements. This article should give you a better idea what you need to do
Expanding on Adam Rackies' answer I was able to implement the following code using VB.NET.
My goal was to copy a list of objects that served mainly as data transfer objects (i.e. database data). The first the class dtoNamedClass is defined and ShallowCopy method is added. A new variable named dtoNamedClassCloneVar is created and a LINQ select query is used to copy the object variable dtoNamedClassVar.
I was able to make changes to dtoNamedClassCloneVar without affecting dtoNamedClassVar.
Public Class dtoNamedClass
... Custom dto Property Definitions
Public Function ShallowCopy() As dtoNamedClass
Return DirectCast(Me.MemberwiseClone(), dtoNamedClass)
End Function
End Class
Dim dtoNamedClassVar As List(Of dtoNamedClass) = {get your database data}
Dim dtoNamedClassCloneVar =
(From d In Me.dtoNamedClass
Where {add clause if necessary}
Select d.ShallowCopy()).ToList
Here's an additional approach that some may prefer since System.Reflection can be slow.
You'll need to add the Newtonsoft.Json NuGet package to your solution, then:
Imports Newtonsoft.Json
And given a class type of MyClass, cloning can be as easy as:
Dim original as New MyClass
'populate properties of original...
Dim copy as New MyClass
copy = JsonConvert.DeserializeObject(Of MyClass)(JsonConvert.SerializeObject(original))
So the approach is to first use the JSON converter to serialize the original object, and than take that serialized data and deserialize it - specifying the class type - into the class instance copy.
The JSON converters are extremely powerful and flexible; you can do all sorts of custom property mappings and manipulations if you need something the basic approach above doesn't seem to address.
this works for me:
mySecondList = myFirstList.ToList
clone is the object you are attempting to clone to.
dim clone as new YourObjectType
You declare it like that.