Scrapy Broad Crawl: Quickstart Example Project - scrapy

Would there be any code example showing a minimal structure of a Broad Crawls with Scrapy?
Some desirable requirements:
crawl in BFO order; (DEPTH_PRIORITY?)
crawl only from URLs that follow certain patterns; and (LinkExtractor?)
URLs must have a maximum depth. (DEPTH_LIMIT)
I am starting with:
import scrapy
from scrapy import Request
from scrapy.linkextractors.lxmlhtml import LxmlLinkExtractor
class WebSpider(scrapy.Spider):
name = "webspider"
def __init__(self):
super().__init__()
self.link_extractor = LxmlLinkExtractor(allow="\.br\/")
self.collecton_file = open("collection.jsonl", 'w')
start_urls = [
"https://www.uol.com.br/"
]
def parse(self, response):
data = {
"url": response.request.url,
"html_content": response.body
}
self.collecton_file.write(f"{data}\n")
for link in self.link_extractor.extract_links(response):
yield Request(link.url, callback=self.parse)
Is that the correct approach to crawl and store the raw HTML on disk?
How to stop the spider when it has already collected n pages?
How to show some stats (pages/min, errors, number of pages collected so far) instead of the standard log?

It should work, but you are writing to a file manually instead of using Scrapy for that.
CLOSESPIDER_PAGECOUNT. But mind that it will start stopping once you reach the specified number of pages, but it will still finish processing some additional pages.
I supect you just want to set LOG_LEVEL to something else.

Related

Scrapy spider on an API to wait until new items are available

I'm writing a Scrapy spider that scrapes an API for all its items. The API does not provide the total count of results, so I go through all the pages in sequence until a page returns zero results. When it does, my spider currently exits.
Instead, I would like the spider to wait for 30 minutes, then try the same page again. Based on the previous question Scrapy: non-blocking pause, I tried the following code:
def parse(self, response):
items = json.loads(response.text)
for item in items:
yield scrapy.Request(f'{self.settings.get("API_URL")}/{item["id"]}',
callback=self.parse_item,
headers=self.settings.get('API_HEADERS')
)
if len(items) == 0:
self.logger.info('No new items found. Waiting for 30 mins...')
d = defer.Deferred()
reactor.callLater(60.0*30.0, d.callback, self.page_request())
return d
but I get an error twisted.internet.error.ReactorAlreadyInstalledError: reactor already installed.
Since I am not familiar with Twisted, and just learning Scrapy, I wonder if anyone has a suggestion how to make progress. Thanks!

Missing results in export when running scrapy spider with multiple start_urls

I am running a scrapy spider to export some football data and using the scrapy splash plugin.
For development I am running the spider against cached results, so as not to hit the website too much. The strange thing is, that I am consistently missing some items in the export when running the spider with multiple start_urls. The number of missing Items differ slightly each time.
However, when I comment out all but one start_urls and run the spider for each one separately, I get all the results. I am not sure if this is a bug with scrapy or if I am missing something about scrapy here, as this is my first project with the framework.
Here is my caching configuration:
HTTPCACHE_ENABLED = True
HTTPCACHE_EXPIRATION_SECS = 0
HTTPCACHE_DIR = 'httpcache'
HTTPCACHE_IGNORE_HTTP_CODES = [403]
HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'
These are my start_urls:
start_urls = [
'https://www.transfermarkt.de/1-bundesliga/startseite/wettbewerb/L1/plus/?saison_id=2017',
'https://www.transfermarkt.de/1-bundesliga/startseite/wettbewerb/L1/plus/?saison_id=2018',
'https://www.transfermarkt.de/1-bundesliga/startseite/wettbewerb/L1/plus/?saison_id=2019',
'https://www.transfermarkt.de/1-bundesliga/startseite/wettbewerb/L1/plus/?saison_id=2020',
'https://www.transfermarkt.de/2-bundesliga/startseite/wettbewerb/L2/plus/?saison_id=2017',
'https://www.transfermarkt.de/2-bundesliga/startseite/wettbewerb/L2/plus/?saison_id=2018',
'https://www.transfermarkt.de/2-bundesliga/startseite/wettbewerb/L2/plus/?saison_id=2019',
'https://www.transfermarkt.de/2-bundesliga/startseite/wettbewerb/L2/plus/?saison_id=2020'
]
I have a standard setup with an export pipeline and my spider yielding splash requests multiple times for each relevant url on the page from a parse method. Each parse method fills the same item passed via cb_kwargs or creates a new one with data from the passed item.
Please let me know if further code from my project, like the spider, pipelines or item loaders might be relevant to the issue and I will edit my question here.

Schedule job for SQL

I have a list of urls which I need to crawl, so I can index the pages and add them to my searchindex.db
urls = ['http://consequenceofsound.net/', 'http://www.tinymixtapes.com/', 'https://www.residentadvisor.net/']
this is how I've initialized my crawler class:
class crawler:
# Initialize the crawler with the name of database
def __init__(self,dbname):
self.con = sqlite3.connect(dbname)
def __del__(self):
self.con.close()
def dbcommit(self):
self.con.commit()
this is the crawling method:
def crawl(self,pages,depth=2):
(...)
#code here that opens and adds links to database
(...)
self.dbcommit()
pages=newpages
here I instantiate my crawler class:
crawler=crawler('searchindex.db')
pagelist = url[0]
crawler.crawl(pagelist)
how do I schedule url crawling and indexing of pages, so that each crawling indexing process resumes after the last one is finished or interrupted by any reason?

scrapyd multiple spiders writing items to same file

I have scrapyd server with several spiders running at same time, I start the spiders one by one using the schedule.json endpoint. All spiders are writing contents on common file using a pipeline
class JsonWriterPipeline(object):
def __init__(self, json_filename):
# self.json_filepath = json_filepath
self.json_filename = json_filename
self.file = open(self.json_filename, 'wb')
#classmethod
def from_crawler(cls, crawler):
save_path='/tmp/'
json_filename=crawler.settings.get('json_filename', 'FM_raw_export.json')
completeName = os.path.join(save_path, json_filename)
return cls(
completeName
)
def process_item(self, item, spider):
line = json.dumps(dict(item)) + "\n"
self.file.write(line)
return item
After the spiders are running I can see how they are collecting data correctly, items are stored in files XXXX.jl and the spiders works correctly, however the contents crawled are not reflected on common file. Spiders seems to work well however the pipeline is not doing well their job and is not collecting data into common file.
I also noticed that only one spider is writing at same time on file.
I don't see any good reason to do what you do :) You can change the json_filename setting by setting arguments on your scrapyd schedule.json Request. Then you can make each spider to generate slightly different files that you merge with post-processing or at query time. You can also write JSON files similar to what you have by just setting the FEED_URI value (example). If you write to single file simultaneously from multiple processes (especially when you open with 'wb' mode) you're looking for corrupt data.
Edit:
After understanding a bit better what you need - in this case - it's scrapyd starting multiple crawls running different spiders where each one crawls a different website. The consumer process is monitoring a single file continuously.
There are several solutions including:
named pipes
Relatively easy to implement and ok for very small Items only (see here)
RabbitMQ or some other queueing mechanism
Great solution but might be a bit of an overkill
A database e.g. SQLite based solution
Nice and simple but likely requires some coding (custom consumer)
A nice inotifywait-based or other filesystem monitoring solution
Nice and likely easy to implement
The last one seems like the most attractive option to me. When scrapy crawl finishes (spider_closed signal), move, copy or create a soft link for the FEED_URL file to a directory that you monitor with a script like this. mv or ln is an atomic unix operation so you should be fine. Hack the script to append the new file on your tmp file that you feed once to your consumer program.
By using this way, you use the default feed exporters to write your files. The end-solution is so simple that you don't need a pipeline. A simple Extension should fit the bill.
On an extensions.py in the same directory as settings.py:
from scrapy import signals
from scrapy.exceptions import NotConfigured
class MoveFileOnCloseExtension(object):
def __init__(self, feed_uri):
self.feed_uri = feed_uri
#classmethod
def from_crawler(cls, crawler):
# instantiate the extension object
feed_uri = crawler.settings.get('FEED_URI')
ext = cls(feed_uri)
crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)
# return the extension object
return ext
def spider_closed(self, spider):
# Move the file to the proper location
# os.rename(self.feed_uri, ... destination path...)
On your settings.py:
EXTENSIONS = {
'myproject.extensions.MoveFileOnCloseExtension': 500,
}

Is Scrapy able to scrape the data once I initialise it's object?

Is it possible for Scrapy to do like when I call the function scrape.crawl("website") in a class, it would redirect to the class where the scraping codes are and execute the function.
I tried to find in various sources and mostly asked me to write it as a script form. But couldn't find any working example that shows me how to initialise the object so as to call the script.
Came close to this code but it's not working.
class DmozSpider(Spider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]
def parse(self, response):
for sel in response.xpath('//ul/li'):
loader = DmozItemLoader(DmozItem(), selector=sel, response=response)
loader.add_xpath('title', 'a/text()')
loader.add_xpath('link', 'a/#href')
loader.add_xpath('desc', 'text()')
yield loader.load_item()
Calling the object?
spider = DmozSpider()
Any kind souls with working example with what I want?
For this you need a quite complex structure -- if I understand your question right.
If you have your instance of the spider you need to set up a Crawler and start it afterwards. For example:
crawler = Crawler(get_project_settings())
crawler.signals.connect(reactor.stop, signal=signals.spider_closed)
crawler.configure()
crawler.crawl(spider)
crawler.start()
This is the base but you should be able to get started with this. However as I've said previously it is quite complex and you need some configuration beside this to get it running.
Update
If you have a URL and want Scrapy to crawl that site you could do it like this:
def __init__(self, url, *args, **kwargs):
super(DmozSpider, self).__init__(*args, **kwargs)
self.start_urls = [url]
And then start crawling like described above. Because Scrapy spiders start as soon as you call them you need the right sequence of setting the start URL and then starting.