Compiler option dependency for LLVM pass with CMake - cmake

I have a project that needs to be built with an LLVM pass. Here is the project structure:
proj/
instrumentation/
CMakeLists.txt
Instrumentation.cpp
[My project files]
CMakeLists.txt
instrumentation/CMakeLists.txt has a target to build the LLVM pass called MyPass.
I've added the following the CMakeLists.txt:
add_subdirectory(instrumentation)
add_compile_options(
"SHELL:-Xclang -load"
"SHELL:-Xclang $<TARGET_FILE:MyPass>")
Now I just need to add MyPass as a dependency for all the targets in my project. I was wondering if there was a way to force MyPass to build first so that when compiling other files, the LLVM pass would be present. Maybe there a way to add a target compile_options dependencies?
Note: I'd rather not add the dependency manually to every target because there many targets in the project.

My solution to this is to create another project to wrap the compiler executable and automatically build with the LLVM pass. Then rebuild the original project with the wrapped compiler.
AFL does this exact thing when building with a clang compiler.

Related

CMake TARGET_RUNTIME_DLLS is empty

I have git cloned, built (with MSVC for both Debug and Release) and then installed wxWidgets:
cmake -B build wxWidgets
cmake --build build --config <CONFIG>
cmake --install build --prefix my_install --config <CONFIG>
with <CONFIG> = Debug and <CONFIG> = Release.
Then I used the following CMake script to link against it, as suggested by the wiki:
cmake_minimum_required(VERSION 3.16)
project(Test)
add_executable(Test WIN32 Main.cpp)
# wxWidgets
SET(wxWidgets_ROOT_DIR ${CMAKE_CURRENT_LIST_DIR}/../thirdparty/my_install)
find_package(wxWidgets COMPONENTS core base REQUIRED)
include(${wxWidgets_USE_FILE})
target_link_libraries(Test PRIVATE ${wxWidgets_LIBRARIES})
# Copy runtime DLLs to the directory of the executable.
add_custom_command(TARGET Test POST_BUILD
COMMAND ${CMAKE_COMMAND} -E echo "Runtime Dlls: $<TARGET_RUNTIME_DLLS:Test>"
)
My goal is to automatically copy the DLLs into the directory of the built executable, so that they can be found at runtime. For that I'm using the TARGET_RUNTIME_DLLS generator expression (follwing the sample code in the docs). In the code above, I only print out the expression at build time for testing purposes. The problem is that it is empty.
The approach worked for me before when installing and linking SDL, but SDL provides package configuration files which create imported targets, defining the DLL location(s) via IMPORTED_LOCATION_RELEASE or IMPORTED_LOCATION_DEBUG. For wxWidgets one is apparently supposed to use the FindwxWidgets.cmake script shipped with CMake, which sadly doesn't define the produced binaries. Maybe that's why TARGET_RUNTIME_DLLS isn't populated.
Does anyone know, either how to get TARGET_RUNTIME_DLLS filled or how to obtain the list of built wxWidgets DLLs for the current configuration (Release/Debug) post build copying?
Thanks a lot in advance!
I am dealing with a similar problem.
First sanity checks:
You have to work on windows platform otherwise this feature does not
work.
Your Cmake is 3.21 or above
Next comes fuzzy part. I think the library that you are trying to include have to be a Shared Imported library and you have to set a set_target_properties for IMPORTED_IMPLIB which is a path to a .lib file of sort (dll import library, I think it is called) So you have to make sure that it is all set in the package library that you trying to link with your executable.
If you have those dll avaiable and you just want to use them and not actually build them then you can write your own cmake script that will do just what I said above. Then you can include that cmake file in your project and then link against your app.
Note: I also work on similar issue right now and what I just said have not been working very reliably. I got some dlls to be copied and some do not.
Edit:
Cmake docs give a more detailed explanation on how this library setting should look like if you use find_package feature.
Found here: https://cmake.org/cmake/help/latest/command/add_library.html#imported-libraries
An UNKNOWN library type is typically only used in the implementation
of Find Modules. It allows the path to an imported library (often
found using the find_library() command) to be used without having to
know what type of library it is. This is especially useful on Windows
where a static library and a DLL's import library both have the same
file extension.

How to rewrite a find_package based library into one which can be embedded into the parent project directly?

The library libwebrtc from https://github.com/cloudwebrtc/libwebrtc-build/blob/dev/CMakeLists.txt was built to be used with make; make install and the project which wants to use the library must later use the find_package from CMake.
I, however, want to change libwebrtc so it can be added as a git submodule into my current project as a custom library, as, for instance, https://github.com/itay-grudev/SingleApplication which is compiled when I type: cmake ..; make into a static/dynamic library and then linked in my main application. (The Qt library example I references earlier was confusing since this is build outside of my main project and only linked to afterwards - which is not what I want). Sorry for that confusion.
To be able to do that, I think that the ExternalProject_Add at https://github.com/cloudwebrtc/libwebrtc-build/blob/a24a5e5947658d43339d4bfd85d3f4c52fc71057/CMakeLists.txt#L100 must be changed into a add_library call.
The problem here is that the include_directories is used by the main project before the library has been completely built.
Question
How to rewrite libwebrtc to be used as a simple static library with proper build dependencies so that my main project is only compiled/linked after the libwebrtc build was finished and custom header files were generated in the CMAKE_CURRENT_BINARY_DIR of libwebrtc.
Or in other words, how to rewrite libwebrtc to be used without having to call make install for the library and then use find_package to use that library.
The hack (which is working already)
With this hack I am already able to:
Build the library from my parent project
Depend on the generated header files which exist only after the libwebrtc has been built completely (thus, delay main project building until dependencies are meet)
Depend on the generated webrtc.a static library for the linker step
I imaging that make install will work since libwebrtc is statically linked.
add_dependencies(${PROJECT_NAME} libwebrtcx)
add_subdirectory(third-party/libwebrtcx)
include_directories(
${CMAKE_BINARY_DIR}/sources/third-party/libwebrtcx/include/webrtc
${CMAKE_BINARY_DIR}/sources/third-party/libwebrtcx/include/webrtc/third_party/libyuv/include/
${CMAKE_BINARY_DIR}/sources/third-party/libwebrtcx/webrtc/src/third_party/abseil-cpp
)
add_library(libwebrtc STATIC IMPORTED)
set_property(TARGET libwebrtc PROPERTY IMPORTED_LOCATION "${CMAKE_BINARY_DIR}/sources/third-party/libwebrtcx/webrtc/src/out/Release/obj/libwebrtc.a")
target_link_libraries(${PROJECT_NAME} libwebrtc)
Note: It requires to rename the libwebrtc project to libwebrtcx and also the ExternalProject_Add at https://github.com/cloudwebrtc/libwebrtc-build/blob/a24a5e5947658d43339d4bfd85d3f4c52fc71057/CMakeLists.txt#L100 must be renamed to libwebrtcx.
Note: It also requires to rename all CMAKE_BINARY_DIR into CMAKE_CURRENT_BINARY_DIR and CMAKE_SOURCE_DIR to CMAKE_CURRENT_SOURCE_DIR. Details can be found here: CMake: Using add_subproject with a library using Include ends up in wrong relative path

How to resolve target redefinition problem in diamond subproject dependency?

There are two libs libA and libB depending on libBase and including it into build process with
add_subdirectory(../libBase build/libBase)
Everything works when they are build separately. But when project prj wants to include everything into its build process:
add_subdirectory(../libA build/libA)
add_subdirectory(../libB build/libB)
Then cmake complaints about target redefinition:
add_library cannot create target "libBase" because another target with the same name already exists.
How to make such project (building all dependences in one step) correct? Is it achievable with add_subdirectory or sth else should be used to add dependencies?
Found it: include_guard() since cmake 3.10

CMAKE - makefile target for a library

I'm currently changing the build system on my project, from gnu makefiles to cmake (that generate makefiles).
My project generates several libraries (.lib), and several executables (.exe).
Currently i generate the makefiles using the following command :
cmake -G "Unix Makefiles" .. -DCMAKE_BUILD_TYPE=Debug
The generated makefiles contain an all target, as well as a target for every executable (compiled as such with the add_executable cmake directive), so i can compile a subset of the project (which saves a lot of time) : make executable_1; make executable_2 and so on.
However, there is no target for the libraries (compiled as such with the add_library cmake directive) so i cannot do make library_1 for example. I want to do this because it would save a lot of time.
I tried to add a dummy executable in the library's cmake, and link the library to this executable (which only contains a main without actually using library_1's code).
add_library(library_1 test.cpp)
add_executable(dummy_exe dummy_main.cpp)
target_link_library(dummy_exe library_1)
It does add a target for dummy_exe but does not build the library because it does not actually need to link any of the library_1's code.
This was a workaround attempt anyway, and i'd rather just call make library_1 after all. Is there any way to add a makefile target for a library using cmake ?
As answered by w-m and Fred, CMAKE indeed create a target for libraries in the Makefile.
I was trying to build the library with the cmake subproject name of the library instead of the library name.
make help was indeed of big help to find this issue, as it lists everything that can be built.

How to include a library using CMAKE in a cross-platform way

I am trying to use the assimp library in a cross platform C++ project. I include the repo as a git submodule, so, effectively, if someone downloads my project they will also download the ASSIMP project.
After I go through the assimp build / CMAKE instructions and (on Linux) type make install and from then on in my project I can use:
target_link_libraries(${PROJECT_NAME} assimp)
However, there is no make install on Windows.
The only other way I have been able to include the library on Linux is to put (in my CmakeLists.txt file):
target_link_libraries(${PROJECT_NAME} ${CMAKE_SOURCE_DIR}/build/assimp/code/libassimp.so)
This is not cross platform as it hardcodes the name and location of the .so file which will not work on Windows.
How can I expose the library so that I can do something like target_link_libraries(${PROJECT_NAME} assimp) on all platforms?
My directory tree looks like:
- src
- include
- assimp
- bin
Where the assimp directory in the include directory is the git submodule
I think you're going about this the wrong way. You don't need to build assimp in a separate step from your project, and you don't need to make install to make it available.
There are a number of ways of handling third party dependencies in Cmake, since you've already chosen to submodule the assimp repository, we'll start there. Assuming assimp is located in the root of your repository in a directory called assimp/ this would be a barebones project including it:
cmake_minimum_required(VERSION 3.0)
project(Project myassimpproj)
# include your directories
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
)
# set any variables you might need to set for your app and assimp
set(BUILD_ASSIMP_TOOLS ON)
set(ASSIMP_BUILD_STATIC_LIB ON)
# add assimp source dir as a subdirectory, effectively making
# assimp's CMakeLists.txt part of your build
add_subdirectory(/path/to/assimp ${CMAKE_BINARY_DIR}/assimp)
add_executable(assimp_target main.cpp)
# be sure to link in assimp, use platform-agnostic syntax for the linker
target_link_libraries(assimp_target assimp)
There may be a better way of phrasing this using generator expressions syntax, but I haven't looked at assimp's CMakeLists.txt to know if it's supported (and this is a more generic way anyway.)
Not every project uses Cmake, so you may not be able to just add_subdirectory(). In those cases, you can effectively "fake" a user call to build them using their build commands on respective platforms. execute_process() runs a command at configure time add_custom_command() and add_custom_target() run commands at build time. You then create a fake target to make integration and cross your fingers they support Cmake someday.
You can also use the ExternalProject commands added to Cmake to create a custom target to drive download, update/patch, configure, build, install and test steps of an external project, but note that this solution and the next download the dependency rather than using the submodule'd source code.
Finally, I prefer to work with prebuilt dependencies, cuts down on build time, and they can be unit tested on their own outside of the project. Conan is an open source, decentralized and multi-platform package manager with very good support for C++ and almost transparent support for Cmake when used the right way. They have grown very stable in the last year. More information on how to use Conan with Cmake can be found here.