creating a single parquet file in s3 pyspark job - amazon-s3

I have written a pyspark program that is reading data from cassandra and writing into aws s3 . Before writing into s3 I have to do repartition(1) or coalesce(1) as this creates one single file otherwise it creates multiple parquet files in s3 .
using repartition(1) or coalesce(1) has performance issue and I feel creating one big partition is not good option with huge data .
what are ways to create one single file in s3 but without compromising on performance ?

coalesce(1) or repartition(1) will put all your data on 1 partition (with a shuffle step when you use repartition compare to coalesce). In that case, only 1 worker will have to write all your data, which is the reason why you have performance issues - you already figured it out.
That is the only way you can use Spark to write 1 file on S3. Currently, there is no other way using just Spark.
Using Python (or Scala), you can do some other things. For example, you write all your files with spark without changing the number of partitions, and then :
you acquire your files with python
you concatenate your files as one
you upload that one file on S3.
It works well for CSV, not that well for non-sequential file type.

Related

How to load multiple huge csv (with different columns) into AWS S3

I have around 50 csv files each of different structure. Each csv file has close to 1000 columns. I am using DictReader to merge csv files locally, but it is taking too much time to merge. The approach was to merge 1.csv and 2.csv to create 12.csv. Then merge 12.csv with 3.csv. This is not the right approach.
for filename in inputs:
with open(filename, "r", newline="") as f_in:
reader = csv.DictReader(f_in) # Uses the field names in this file
Since I have to finally upload this huge single csv to AWS, I was thinking about a better AWS based solution. Any suggestions on how I can import these multiple different structure csv and merge it in AWS?
Launch an EMR cluster and merge the files with Apache Spark. This gives you complete control over the schema. This answer might help for example.
Alternatively, you can also try your luck and see how AWS Glue handles the multiple schemas when you create a crawler.
You should copy your data to s3 in both cases.

loading a pg_dump off of s3 into redshift

I'm trying to load a complete database dump into Redshift. Is there a single command to restore the data from a pg_dump living on s3 into Redshift? If not, what are the best steps for tackling this?
Thanks
If you have a non compressed pg_dump this should be possible using a psql command (you may need to manually edit to get the right syntax, depending on your versions and options set).
However this is a very inefficient and slow way to load redshift and I do not recommend it. If your tables are large it could take days or weeks!
What you need to do is this:
create target tables on redshift based upon the source table, but
considering sort keys and distribution.
unload you postgres source tables into csv files using postgres
"copy" command
If the source csv files are very big (e.g. more than say 100MB),
consider splitting these into separate files as they will load
faster (redshift will parallelize)
gzip the csv files (recommended but not essential)
upload these csv files to s3, with a separate folder per table
load the data into redshift from s3 by using the redshift copy
command

How to avoid reading old files from S3 when appending new data?

Once in 2 hours, spark job is running to convert some tgz files to parquet.
The job appends the new data into an existing parquet in s3:
df.write.mode("append").partitionBy("id","day").parquet("s3://myBucket/foo.parquet")
In spark-submit output I can see significant time is being spent on reading old parquet files, for example:
16/11/27 14:06:15 INFO S3NativeFileSystem: Opening 's3://myBucket/foo.parquet/id=123/day=2016-11-26/part-r-00003-b20752e9-5d70-43f5-b8b4-50b5b4d0c7da.snappy.parquet' for reading
16/11/27 14:06:15 INFO S3NativeFileSystem: Stream for key
'foo.parquet/id=123/day=2016-11-26/part-r-00003-e80419de-7019-4859-bbe7-dcd392f6fcd3.snappy.parquet'
seeking to position '149195444'
It looks like this operation takes less than 1 second per file, but the amount of files increases with time (each append adds new files), which makes me think that my code will not be able to scale.
Any ideas how to avoid reading old parquet files from s3 if I just need to append new data?
I use EMR 4.8.2 and DirectParquetOutputCommitter:
sc._jsc.hadoopConfiguration().set('spark.sql.parquet.output.committer.class', 'org.apache.spark.sql.parquet.DirectParquetOutputCommitter')
I resolved this issue by writing the dataframe to EMR HDFS and then using s3-dist-cp uploading the parquets to S3
Switch this over to using Dynamic Partition Overwrite Mode using:
.config("spark.sql.sources.partitionOverwriteMode", "dynamic")
Also, avoid the DirectParquetOutputCommitter, and instead don't modify this - you will achieve better results in terms of speed using the EMRFS File Committer.

Loading or pointing to multiple parquet paths for data analysis with hive or prestodb

I have couple of spark jobs that produce parquet files in AWS S3. Every once in a while i need to run some ad-hoc queries on a given date range of this data. I don't want to do this in spark because I want our QA team which has no knowledge os spark be able to do this. What i like to do is to spin up an AWS EMR cluster and load the parquet files into HDFS and run my queries against it. I have figured out how to create tables with hive and point it to one s3 path. But then that limits my data to only one day. because each day of date has multiple files under a path like
s3://mybucket/table/date/(parquet files 1 ... n).
So problem one is to figure how to load multiple days of data into hive. ie
s3://mybucket/table_a/day_1/(parquet files 1 ... n).
s3://mybucket/table_a/day_2/(parquet files 1 ... n).
s3://mybucket/table_a/day_3/(parquet files 1 ... n).
...
s3://mybucket/table_b/day_1/(parquet files 1 ... n).
s3://mybucket/table_b/day_2/(parquet files 1 ... n).
s3://mybucket/table_b/day_3/(parquet files 1 ... n).
I know hive can support partitions but my s3 files are not setup that way.
I have also looked into prestodb which looks like to be the favorite tool for this type of data analysis. The fact it supports ansi SQL makes it a great tool for people that have SQL knowledge but know very little about hadoop or spark. I did install this on my cluster and it works great. But looks like you can't really load data into your tables and you have to rely on Hive to do that part. Is this the right way to use prestodb? I watched a netflix presentation about their use of prestodb and using s3 in place of HDFS. If this works its great but i wonder how the data is moved into memory. At what point the parquet files will be moved from s3 to the cluster. Do i need to have cluster that can load the entire data into memory? how is this generally setup?
You can install Hive and create Hive tables with you data in S3, described in the blog post here: https://blog.mustardgrain.com/2010/09/30/using-hive-with-existing-files-on-s3/
Then install Presto on AWS, configure Presto to connect the hive catalog which you installed previously. Then you can query the your data on S3, with Presto by using SQL.
Rather than trying to load multiple files, you could instead use the API to concatenate the days you want into a single object, which you can then load through the means you already mention.
AWS has a blog post highlighting how to do this exact thing purely through the API (without downloading + re-uploading the data):
https://ruby.awsblog.com/post/Tx2JE2CXGQGQ6A4/Efficient-Amazon-S3-Object-Concatenation-Using-the-AWS-SDK-for-Ruby

Incrementally add data to Parquet tables in S3

I would like to keep a copy of my log data in in Parquet on S3 for ad hoc analytics. I mainly work with Parquet through Spark and that only seems to offer operations to read and write whole tables via SQLContext.parquetFile() and SQLContext.saveAsParquetFile().
Is there any way to add data to and existing Parquet table
without writing a whole new copy of it
particularly when it is stored in S3?
I know I can create separate tables for the updates and in Spark I can form the union of the corresponig DataFrames in Spark at query time but I have my doubts about the scalability of that.
I can use something other than Spark if needed.
The way to append to a parquet file is using SaveMode.Append
`yourDataFrame.write.mode(SaveMode.Append).parquet("/your/file")`
You don't need to union DataFrames after creating them separately, just supply all the paths related to your query to the parquetFile(paths) and get one DataFrame. Just as the signature of reading parquet file: sqlContext.parquetFile(paths: String*) suggests.
Under the hood, in newParquetRelation2, all the .parquet files from all the folders you supply, as well as all the _common_medata and _metadata would be filled into a single list and regard equally.