Seaborn: annotate missing values on the heatmap - pandas

I am plotting a heatmap in python with the seaborn library. The dataframe contains some missing values (NaN). I wish that the heatmap cells corresponding to these fields are white (by default) and also annotated with a string NA. However, if I see it correctly, annotation does not work with missing values. Is there any hack around it?
My code:
sns.heatmap(
df,
ax=ax[0, 0],
cbar=False,
annot=annot_df,
fmt="",
annot_kws={"size": annot_size, "va": "center_baseline"},
cmap="coolwarm",
linewidth=0.5,
linecolor="black",
vmin=-max_value,
vmax=max_value,
xticklabels=True,
yticklabels=True,
)

An idea is to draw another heatmap, with a transparent color and with only values where the original dataframe is NaN. To control the axis labels, the "real" heatmap should be drawn last. Note that the color for the NaN cells is the background color of the plot.
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
data = np.where(np.random.rand(7, 10) < 0.2, np.nan, np.random.rand(7, 10) * 2 - 1)
df = pd.DataFrame(data)
annot_df = df.applymap(lambda f: f'{f:.1f}')
fig, ax = plt.subplots(squeeze=False)
sns.heatmap(
np.where(df.isna(), 0, np.nan),
ax=ax[0, 0],
cbar=False,
annot=np.full_like(df, "NA", dtype=object),
fmt="",
annot_kws={"size": 10, "va": "center_baseline", "color": "black"},
cmap=ListedColormap(['none']),
linewidth=0)
sns.heatmap(
df,
ax=ax[0, 0],
cbar=False,
annot=annot_df,
fmt="",
annot_kws={"size": 10, "va": "center_baseline"},
cmap="coolwarm",
linewidth=0.5,
linecolor="black",
vmin=-1,
vmax=1,
xticklabels=True,
yticklabels=True)
plt.show()
PS: To explicitly color the 'NA' cells, e.g. cmap=ListedColormap(['yellow']) could be used.

Related

How to add labels to sets of seaborn boxplot

I have 2 sets of boxplots, one set in blue color and another in red color. I want the legend to show the label for each set of boxplots, i.e.
Legend:
-blue box- A, -red box- B
Added labels='A' and labels='B' within sns.boxplot(), but didn't work with error message "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument". How do I add the labels?
enter image description here
code for the inserted image:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
x = list(range(1,13))
n = 40
index = [item for item in x for i in range(n)]
np.random.seed(123)
df = pd.DataFrame({'A': np.random.normal(30, 2, len(index)),
'B': np.random.normal(10, 2, len(index))},
index=index)
red_diamond = dict(markerfacecolor='r', marker='D')
blue_dot = dict(markerfacecolor='b', marker='o')
plt.figure(figsize=[10,5])
ax = plt.gca()
ax1 = sns.boxplot( x=df.index, y=df['A'], width=0.5, color='red', \
boxprops=dict(alpha=.5), flierprops=red_diamond, labels='A')
ax2 = sns.boxplot( x=df.index, y=df['B'], width=0.5, color='blue', \
boxprops=dict(alpha=.5), flierprops=blue_dot, labels='B')
plt.ylabel('Something')
plt.legend(loc="center", fontsize=8, frameon=False)
plt.show()
Here are the software versions I am using: seaborn version 0.11.2. matplotlib version 3.5.1. python version 3.10.1
The following approach sets a label via the boxprops, and creates a legend using part of ax.artists. (Note that ax, ax1 and ax2 of the question's code are all pointing to the same subplot, so here only ax is used.)
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
x = np.arange(1, 13)
index = np.repeat(x, 40)
np.random.seed(123)
df = pd.DataFrame({'A': np.random.normal(30, 2, len(index)),
'B': np.random.normal(10, 2, len(index))},
index=index)
red_diamond = dict(markerfacecolor='r', marker='D')
blue_dot = dict(markerfacecolor='b', marker='o')
plt.figure(figsize=[10, 5])
ax = sns.boxplot(data=df, x=df.index, y='A', width=0.5, color='red',
boxprops=dict(alpha=.5, label='A'), flierprops=red_diamond)
sns.boxplot(data=df, x=df.index, y='B', width=0.5, color='blue',
boxprops=dict(alpha=.5, label='B'), flierprops=blue_dot, ax=ax)
ax.set_ylabel('Something')
handles, labels = ax.get_legend_handles_labels()
handles = [h for h, lbl, prev in zip(handles, labels, [None] + labels) if lbl != prev]
ax.legend(handles=handles, loc="center", fontsize=8, frameon=False)
plt.show()
Alternative approaches could be:
pd.melt the dataframe to long form, so hue could be used; a problem here is that then the legend wouldn't take the alpha from the boxprops into account; also setting different fliers wouldn't be supported
create a legend from custom handles

who to plot stats.probplot in a grid?

I have a data frame with four columns I would like to plot the normality test for each column in a 2*2 grid, but it only plot one figure, and the else is empty.
import random
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
fig, axs = plt.subplots(2,2, figsize=(15, 6), facecolor='w', edgecolor='k')
fig.subplots_adjust(hspace = .5, wspace=.001)
data = {'col1': [random.randrange(1, 50, 1) for i in range(1000)], 'col2': [random.randrange(1, 50, 1) for i in range(1000)],'col3':[random.randrange(1, 50, 1) for i in range(1000)]
,'col4':[random.randrange(1, 50, 1) for i in range(1000)]}
df = pd.DataFrame(data)
for ax, d in zip(axs.ravel(), df):
ax=stats.probplot(df[d], plot=plt)
#ax.set_title(str(d))
plt.show()
is there a way to construct the subplot and the stats.probplot within a loop?
In your code, you need to change the for loop to this:
for ax, d in zip(axs.ravel(), df):
stats.probplot(df[d], plot=ax)
#ax.set_titl(str(d))
plt.show()
I hope this will help you move on.

Matplotlib--scatter plot with half filled markers

Question: Using a scatter plot in matplotlib, is there a simple way get a half-filled marker?
I know half-filled markers can easily be done using a line plot, but I would like to use 'scatter' because I want to use marker size and color (i.e., alternate marker face color) to represent other data. (I believe this will be easier with a scatter plot since I want to automate making a large number of plots from a large data set.)
I can't seem to make half-filled markers properly using a scatter plot. That is to say, instead of a half-filled marker, the plot shows half of a marker. I've been using matplotlib.markers.MarkerStyle, but that seems to only get me halfway there. I'm able to get following output using the code below.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.markers import MarkerStyle
plt.scatter(1, 1, marker=MarkerStyle('o', fillstyle='full'), edgecolors='k', s=500)
plt.scatter(2, 2, marker=MarkerStyle('o', fillstyle='left'), edgecolors='k', s=500)
plt.scatter(3, 3, marker=MarkerStyle('o', fillstyle='right'), edgecolors='k', s=500)
plt.scatter(4, 4, marker=MarkerStyle('o', fillstyle='top'), edgecolors='k', s=500)
plt.scatter(5, 5, marker=MarkerStyle('o', fillstyle='bottom'), edgecolors='k', s=500)
plt.show()
As mentioned in the comments, I don't see why you have to use plt.scatter but if you want to, you can fake a combined marker:
from matplotlib.markers import MarkerStyle
from matplotlib import pyplot as plt
#data generation
import pandas as pd
import numpy as np
np.random.seed(123)
n = 10
df = pd.DataFrame({"X": np.random.randint(1, 20, n),
"Y": np.random.randint(10, 30, n),
"S": np.random.randint(50, 500, n),
"C1": np.random.choice(["red", "blue", "green"], n),
"C2": np.random.choice(["yellow", "grey"], n)})
fig, ax = plt.subplots()
ax.scatter(df.X, df.Y, s=df.S, c=df.C1, edgecolor="black", marker=MarkerStyle("o", fillstyle="right"))
ax.scatter(df.X, df.Y, s=df.S, c=df.C2, edgecolor="black", marker=MarkerStyle("o", fillstyle="left"))
plt.show()
Sample output:
This works, of course, also for continuous data:
from matplotlib import pyplot as plt
from matplotlib.markers import MarkerStyle
import pandas as pd
import numpy as np
np.random.seed(123)
n = 10
df = pd.DataFrame({"X": np.random.randint(1, 20, n),
"Y": np.random.randint(10, 30, n),
"S": np.random.randint(100, 1000, n),
"C1": np.random.randint(1, 100, n),
"C2": np.random.random(n)})
fig, ax = plt.subplots(figsize=(10,8))
im1 = ax.scatter(df.X, df.Y, s=df.S, c=df.C1, edgecolor="black", marker=MarkerStyle("o", fillstyle="right"), cmap="autumn")
im2 = ax.scatter(df.X, df.Y, s=df.S, c=df.C2, edgecolor="black", marker=MarkerStyle("o", fillstyle="left"), cmap="winter")
cbar1 = plt.colorbar(im1, ax=ax)
cbar1.set_label("right half", rotation=90)
cbar2 = plt.colorbar(im2, ax=ax)
cbar2.set_label("left half", rotation=90)
plt.show()
Sample output:
But be reminded that plt.plot with marker definitions might be faster for large-scale datasets: The plot function will be faster for scatterplots where markers don't vary in size or color.

how to plot lines linking medians of multiple violin distributions in seaborn?

I struggle hard to succeed in plotting a dot-line between the median values (and min and max) per type of stacked violin distributions.
I tried superposing a violin plot with a seaborn.lineplot but it failed. I'm not sure with this approach that I can draw dot-lines and also link min and max of distributions of the same type. I also tried to use seaborn.lineplot but here the challenge is to plot min and max of the distribution at each x-axis value.
Here is a example dataset and the code for the violin plot in seaborn
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
x=[0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8]
cate=['a','a','a','a','b','b','b','b','c','c','c','c','a','a','a','a','b','b','b','b','c','c','c','c','a','a','a','a','b','b','b','b','c','c','c','c','a','a','a','a','b','b','b','b','c','c','c','c']
y=[1.1,1.12,1.13,1.13,3.1,3.12,3.13,3.13,5.1,5.12,5.13,5.13,2.2,2.22,2.25,2.23,4.2,4.22,4.25,4.23,6.2,6.22,6.25,6.23,2.2,2.22,2.24,2.23,4.2,4.22,4.24,4.23,6.2,6.22,6.24,6.23,1.1,1.13,1.14,1.12,3.1,3.13,3.14,3.12,5.1,5.13,5.14,5.12]
my_pal =['red','green', 'purple']
df = pd.DataFrame({'x': x, 'Type': cate, 'y': y})
ax=sns.catplot(y='y', x='x',data=df, hue='Type', palette=my_pal, kind="violin",dodge =False)
sns.lineplot(y='y', x='x',data=df, hue='Type', palette=my_pal, ci=100,legend=False)
plt.show()
but it plots line only on a reduce part of the left of the plot. Is there a trick to superpose lineplot with violin plot?
For the line plot, 'x' is considered numerical. However, for the violin plot 'x' is considered categorical (positioned at 0, 1, 2, ...).
A solution is to convert 'x' to strings to have both plots consider it as categorical.
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
my_pal = ['red', 'green', 'purple']
N = 40
df = pd.DataFrame({'x': np.random.randint(1, 6, N*3) * 0.2,
'y': np.random.uniform(0, 1, N*3) + np.tile([2, 4, 6], N),
'Type': np.tile(list('abc'), N)})
df['x'] = [f'{x:.1f}' for x in df['x']]
ax = sns.violinplot(y='y', x='x', data=df, hue='Type', palette=my_pal, dodge=False)
ax = sns.lineplot(y='y', x='x', data=df, hue='Type', palette=my_pal, ci=100, legend=False, ax=ax)
ax.margins(0.15) # slightly more padding for x and y axis
ax.legend(bbox_to_anchor=(1.01, 1), loc='upper left')
plt.tight_layout()
plt.show()

"panel barchart" in matplotlib

I would like to produce a figure like this one using matplotlib:
(source: peltiertech.com)
My data are in a pandas DataFrame, and I've gotten as far as a regular stacked barchart, but I can't figure out how to do the part where each category is given its own y-axis baseline.
Ideally I would like the vertical scale to be exactly the same for all the subplots and move the panel labels off to the side so there can be no gaps between the rows.
I haven't exactly replicated what you want but this should get you pretty close.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#create dummy data
cols = ['col'+str(i) for i in range(10)]
ind = ['ind'+str(i) for i in range(10)]
df = pd.DataFrame(np.random.normal(loc=10, scale=5, size=(10, 10)), index=ind, columns=cols)
#create plot
sns.set_style("whitegrid")
axs = df.plot(kind='bar', subplots=True, sharey=True,
figsize=(6, 5), legend=False, yticks=[],
grid=False, ylim=(0, 14), edgecolor='none',
fontsize=14, color=[sns.xkcd_rgb["brownish red"]])
plt.text(-1, 100, "The y-axis label", fontsize=14, rotation=90) # add a y-label with custom positioning
sns.despine(left=True) # get rid of the axes
for ax in axs: # set the names beside the axes
ax.lines[0].set_visible(False) # remove ugly dashed line
ax.set_title('')
sername = ax.get_legend_handles_labels()[1][0]
ax.text(9.8, 5, sername, fontsize=14)
plt.suptitle("My panel chart", fontsize=18)