I have the following model, I want to build the same sequentional network and finally concate the outputs of the two network. Here is my model:
import numpy as np
import tensorflow as tf
from keras.models import Sequential, Model,load_model
from keras.layers import Dense, Dropout, Activation, Flatten, LSTM, Embedding, Input, concatenate, Lambda
from keras.utils import np_utils
from sklearn.metrics import mean_squared_error
#from keras.utils.vis_utils import plot_model
import keras
from keras_self_attention import SeqSelfAttention, SeqWeightedAttention
X1 = np.random.normal(size=(100,1,2))
X2 = np.random.normal(size=(100,1,2))
X3 = np.random.normal(size=(100,1,2))
Y = np.random.normal(size=(100,18))
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X1.shape[1],X1.shape[2])))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units=18))
model.compile(optimizer = 'adam', loss = 'mean_squared_error',metrics = ['MAE'])
model.fit(X1, Y, epochs =1, batch_size = 100)
Here is the model. I want to add the red part to the model. Can anybody help me? Thanks
it is better to use the Functionnal API to handle multiple inputs :
def sub_model(input):
mod1=LSTM(50,return_sequences=True)(input)
mod1=LSTM(50,dropout=0.2)(mod1)
return Dense(18)(mod1)
inp1=Input(shape=(1,2))
inp2=Input(shape=(1,2))
mod1=sub_model(inp1)
mod2=sub_model(inp2)
concat=Concatenate()([mod1,mod2])
output=Dense(18)(concat)
model=models.Model([inp1,inp2],output)
which gives you :
To train it, you can use model.fit() like :
model.fit([X1,X2],y)
Related
I run the following code in Google Colab(with GPU):
import random
random.seed(1)
import numpy as np
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
import pandas as pd
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers import Flatten, Dense, Lambda, SimpleRNN
from keras.optimizers import *
from keras.utils import np_utils
from keras.initializers import *
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score, auc, precision_recall_curve
from sklearn.metrics import confusion_matrix
from keras.callbacks import EarlyStopping
from keras import backend as K
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
##Loading dataset train and validation files, the files are same for every run
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5)
print("***********************************************************************************************")
def make_model():
model = Sequential()
model.add(Conv2D(10,(5,5), kernel_initializer=glorot_uniform(seed=1), input_shape = (22,10,1), use_bias = True, activation = "relu", strides = 1, padding = "valid"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(20, kernel_initializer=glorot_uniform(seed=1), activation = "relu"))
model.add(Lambda(lambda x: tf.expand_dims(x, axis=1)))
model.add(SimpleRNN(20, kernel_initializer=glorot_uniform(seed=1), activation="relu",return_sequences=False))
model.add(Dense(1, kernel_initializer=glorot_uniform(seed=1), activation="sigmoid"))
opti = SGD(lr = 0.01)
model.compile(loss = "binary_crossentropy", optimizer = opti, metrics = ["accuracy"])
return model
model = make_model()
model.fit(x_train, y_train, validation_data = (x_validation,y_validation), epochs = 50, batch_size = 20, verbose = 2, callbacks=[es])
Despite setting all seed values, my prediction results of the model are different on subsequent runs. The training and testing of the model happens in the same Colab cell.
You are dealing with floating point numbers that are multiplied and added on different threads and can therefore happen in different order. Floating point additions and multiplications are not commutative. See What Every Computer Scientist Should Know About Floating-Point Arithmetic.
This is the code I'm running:
import pandas as pd
import numpy as np
from tqdm import tqdm, trange
import unicodedata
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.models import Model
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import LSTM, Embedding, Dense, TimeDistributed, Dropout,
Bidirectional
# Defining Constants
# Maximum length of text sentences
MAXLEN = 180
# Number of LSTM units
LSTM_N = 150
# batch size
BS=48
input = Input(shape=(MAXLEN,))
model = Embedding(input_dim=n_words, output_dim=MAXLEN, input_length=MAXLEN)(input)
model = Dropout(0.2)(model)
model = Bidirectional(LSTM(units=LSTM_N, return_sequences=True, recurrent_dropout=0.1))(model)
out = TimeDistributed(Dense(n_tags, activation="softmax"))(model) # softmax output layer
model = Model(input, out)
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
history = model.fit(X, np.array(y), batch_size=BS, epochs=2, validation_split=0.05, verbose=1)
I'm running a bidirectional LSTM. But this error is appearing:
TypeError: object of type 'Bidirectional' has no len()
What's wrong in this code? Please help.
You are not doing consistent imports. Simply change,
from keras.models import Model
to
from tensorflow.keras.models import Model
Changing from
from tensorflow.keras.layers import Input
to
from keras.layers import Input
solved my issue.
I am transitioning from Pytorch to TensorFlow 1.12 and would like to know whether it is possible to define tf.keras.Sequential classes within a tf.keras.Model and run those in eager mode.
I constructed this minimum non-working example and would be grateful if someone could advise where I am going wrong. I have also used tf.contrib.eager.Network classes (with more success) however, since they are scheduled for deprecation I tried avoiding those.
import numpy as np
import tensorflow as tf
import tensorflow.contrib.eager as tfe
from keras.models import Sequential
from keras.layers import Dense, Activation
from tensorflow.train import AdamOptimizer
tf.enable_eager_execution()
class MLP(tf.keras.Model):
def __init__(self, in_dim, out_dim, hidden_dim, num_layers, activation):
super(MLP, self).__init__()
model = Sequential()
in_features = in_dim
for layer in range(num_layers):
model.add(Dense(hidden_dim,))
model.add(Activation(activation))
in_features = hidden_dim
model.add(Dense(out_dim, input_shape=(hidden_dim,)))
self.model = model
def call(self, inputs):
return self.model(inputs)
model = MLP(10, 1, 20, 4, 'relu')
optim = AdamOptimizer(learning_rate=1e-4)
for v in model.variables:
print(v)
z = tf.convert_to_tensor(np.random.randn(100, 10), dtype=tf.float32)
with tfe.GradientTape() as tape:
tape.watch(z)
u = model(z)
loss = tf.reduce_mean(tf.abs(u))
grad = tape.gradient(loss, model.trainable_variables)
optim.apply_gradients(zip(grad, model.trainable_variables))
print(loss.numpy())
Use
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
instead of:
from keras.models import Sequential
from keras.layers import Dense, Activation
I tried to do human pose action recognition model,
I referred this model
I like to use LSTM for this model. So I have made some changes in train.py
My train.py code:
import pandas as pd
from enum import Enum
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam
from keras.models import load_model
from keras.layers import LSTM
class Actions(Enum):
sit = 0
stand = 1
walk = 2
sleep= 3
raw_data = pd.read_csv('7537real1.csv', header=0)
dataset = raw_data.values
X = dataset[0:7537, 0:36].astype(float)
Y = dataset[0:7537, 36]
encoder_Y = [0]* 4479 + [1]* 1425 + [2] * 1164 + [3] * 468
dummy_Y = np_utils.to_categorical(encoder_Y)
X_train, X_test, Y_train, Y_test = train_test_split(X, dummy_Y, test_size=0.1, random_state=9)
model = Sequential()
model.add(LSTM(4, input_shape=(36,1)))
model.add(Dense(units=4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(0.0001), metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=32, epochs=500, verbose=1, validation_data=(X_test, Y_test))
model.save('7537real1.h5')
My data set has 36 features and class attribute (labels:0,1,2,3)
And totally there are 7537 records in the dataset.
When I tried to build the LSTM sequential classification model I got value error.
Also I have attached dataset sample as screenshot (csv file).
How to reshape the data(array) set for this model and how to build the LSTM sequential model?
This is a keras model for sentiment analysis i need to convert it to tensorflow i couldn’t build embedding layer with tensorflow and using confusion matrix to evaluate this model? And I asked if tf-learn is the-same as tensorflow
import os
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import set_random_seed
set_random_seed(2)
from nltk.tokenize import word_tokenize
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from sklearn.preprocessing import LabelEncoder
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers.embeddings import Embedding
from keras.layers import Flatten
from keras.layers import Conv1D, MaxPooling1D
from keras.layers import Dense,Activation
from keras.layers import Dropout
from keras.callbacks import TensorBoard, ModelCheckpoint
import re
import string
import collections
import time
seed = 10
Read CSV Files
df=pd.read_csv('tweets-pos-neg.csv', usecols = ['text','airline_sentiment'])
df = df.reindex(['text','airline_sentiment'], axis=1) #reorder columns
df=df.apply(lambda x: x.astype(str).str.lower())
Normalize Text
def normalize(text):
text= re.sub(r"http\S+", r'', text)
text= re.sub(r"#\S+", r'', text)
punctuation = re.compile(r'[!"#$%&()*+,-./:;<=>?#[\]^_`{|}~|0-9]')
text = re.sub(punctuation, ' ', text)
text= re.sub(r'(.)\1\1+', r'\1', text)
return text
Cleaned Text
def prepareDataSets(df):
sentences=[]
for index, r in df.iterrows():
text= normalize(r['text'])
sentences.append([text,r['airline_sentiment']])
df_sentences=pd.DataFrame(sentences,columns=
['text','airline_sentiment'])
return df_sentences
edit_df=prepareDataSets(df)
edit_df=shuffle(edit_df)
X=edit_df.iloc[:,0]
Y=edit_df.iloc[:,1]
Split reviews to tokens
max_features = 50000
tokenizer = Tokenizer(num_words=max_features, split=' ')
tokenizer.fit_on_texts(X.values)
#convert review tokens to integers
X_seq = tokenizer.texts_to_sequences(X)
Padding Sequence to make all vectors with the same size according to MAX-length of reviews
seq_len=35
X_pad = pad_sequences(X_seq,maxlen=seq_len)
Convert target value from string to integer
le=LabelEncoder()
Y_le=le.fit_transform(Y)
Y_le_oh=to_categorical(Y_le)
Train-Test-Split
X_train, X_test, Y_train, Y_test = train_test_split(X_pad,Y_le_oh, test_size
= 0.33, random_state = 42)
X_train, X_Val, Y_train, Y_Val = train_test_split(X_train,Y_train, test_size
= 0.1, random_state = 42)
print(X_train.shape,Y_train.shape)
print(X_test.shape,Y_test.shape)
print(X_Val.shape,Y_Val.shape)
Create the model
embedding_vecor_length = 32 #no of vector columns
model_cnn = Sequential()
model_cnn.add(Embedding(max_features, embedding_vecor_length,
input_length=seq_len))
model_cnn.add(Conv1D(filters=100, kernel_size=2, padding='valid',
activation='relu', strides=1))
model_cnn.add(MaxPooling1D(2))
model_cnn.add(Flatten())
model_cnn.add(Dense(256, activation='relu'))
model_cnn.add(Dense(2, activation='softmax'))
opt=tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)
model_cnn.compile(loss='binary_crossentropy', optimizer=opt, metrics=
['accuracy'])
print(model_cnn.summary())
Evaluate model
history=model_cnn.fit(X_train, Y_train, epochs=3, batch_size=32, callbacks=[tensorboard], validation_data=(X_Val, Y_Val))
scores = model_cnn.evaluate(X_test, Y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[-1]*100))
If you just need to use Tensorflow APIs to train / evaluate, you can build an Estimator using model_to_estimator function.
Here's the documentation with an example.