I want to be able to start fire-and-forget jobs in ASP.NET Core 2.2. I have tried the following:
services.AddHostedService<TestHostedService>();
public class TestHostedService : BackgroundService
{
private readonly ILogger _logger;
public TestHostedService(ILoggerFactory loggerFactory)
{
_logger = loggerFactory.CreateLogger<TestHostedService>();
}
public IBackgroundTaskQueue TaskQueue { get; }
protected async override Task ExecuteAsync(
CancellationToken cancellationToken)
{
_logger.LogInformation("TestHostedService is starting.");
_logger.LogInformation("TestHostedService is stopping.");
}
}
However, this automatically starts and I want to be able to start it on demand, similarly to how Hangfire allows:
BackgroundJob.Enqueue<TestJob>(x => x.DoWork());
This also allows the job to naturally use ASP.NET CORE DI.
Question: How to start an ASP.NET Core BackgroundService on demand?
###Background information
I am dealing with an application that needs to fire-and-forget various methods. The already written code looks like this:
Task.Run(() => RunSomething(_serviceScopeFactory));
This means that each method must explicitly deal with getting a scope and retrieving the dependencies which is quite ugly.
If you want to run the BackgroundService in the MVC controller or other service. You could try to inject the IServiceProvider to that class and then loop all the hosted service and find the background service, at last you could call the startasync method.
More details, you could refer to below codes:
Register the service in Startup.cs
services.AddHostedService<TestHostedService>();
Execute the background service in the controller:
public class HomeController : Controller
{
private readonly IServiceProvider _serviceProdiver;
public HomeController(IServiceProvider serviceProdiver) {
_serviceProdiver = serviceProdiver;
}
public async Task<IActionResult> Index()
{
var allBackgroundServices = _serviceProdiver.GetServices<IHostedService>();
foreach (var hostedService in allBackgroundServices)
{
if (hostedService.GetType() == typeof(TestHostedService))
{
await hostedService.StartAsync(CancellationToken.None);
}
}
return View();
}
}
Result:
My main problem is to get the right instance of the SignalR hub.
Context: Im building a webapplication which communicates with a couple of external systems. CRUD operations in my application result in updating the databases of the external systems.
In this example i have 3 services running:
ExternalSystem | StateMachine | .NET CORE WebAPI
When i post the 'create employee' form, a RabbitMQ message will be sent from the WebAPI to the statemachine. The statemachine then sends a couple of create messages to my external system service which updates the database. Thereafter, it updates the statemachine to keep track of the createoperation.
Form -> API -> StateMachine -> ExternalSystem -> StateMachine -> API
So far so good. Now i would like to use SignalR to send the status updates to the client. So i've implemented this consumer in the API:
public class UpdatesConsumer :
IConsumer<IExternalSystemUpdateMessage>
{
private readonly IHubContext<UpdatesHub> _updaterHubContext;
public UpdatesConsumer(IHubContext<UpdatesHub> hubContext)
{
_updaterHubContext = hubContext;
}
public Task Consume(ConsumeContext<IExternalSystemUpdateMessage> context)
{
//return _updaterHubContext.Clients.Group(context.Message.CorrelationId.ToString()).SendAsync("SEND_UPDATE", context.Message.Message);// this.SendUpdate(context.Message.CorrelationId, context.Message.Message);
return _updaterHubContext.Clients.All.SendAsync("SEND_UPDATE", context.Message.Message);
}
}
This is my SignalR hub:
public class UpdatesHub :
Hub
{
public Task SendUpdate(Guid correlationId, string message)
{
return Clients.Group(correlationId.ToString()).SendAsync("SEND_UPDATE", message);
}
}
And this is how the Bus and consumer is instantiated:
public void ConfigureServices(IServiceCollection services)
{
_services = services;
services.AddMvc();
services.AddSignalR();
//services.AddSingleton<IHubContext<UpdatesHub>>();
WebAPI.CreateBus();
}
public static IServiceCollection _services;
static IBusControl _busControl;
public static IBusControl Bus
{
get
{
return _busControl;
}
}
public static void CreateBus()
{
IRMQConnection rmqSettings = Config.GetRMQConnectionConfig("rmq-settings.json", "connection");
_busControl = MassTransit.Bus.Factory.CreateUsingRabbitMq(x =>
{
var host = x.Host(BusInitializer.GetUri("", rmqSettings), h =>
{
h.Username(rmqSettings.UserName);
h.Password(rmqSettings.Password);
});
x.ReceiveEndpoint(host, "externalsystems.update",
e => { e.Consumer(() => new UpdatesConsumer((IHubContext<UpdatesHub>)Startup.__serviceProvider.GetService(typeof(IHubContext<UpdatesHub>)))); });
});
TaskUtil.Await(() => _busControl.StartAsync());
}
=========================================================================
So the problem is that _updaterHubContext.Clients in my Consumer class, always turn out to be empty. I've tested accessing the hub in a controller, and the clients do show up:
public class TestController : Controller
{
private readonly IHubContext<UpdatesHub> _hubContext;
public TestController(IHubContext<UpdatesHub> hubContext)
{
_hubContext = hubContext;
}
[HttpGet]
[Route("api/Test/")]
public IActionResult Index()
{
return View();
}
}
How can i get the right instance of the hub in my Consumer class? Or how can i access the IServiceCollection that .net is using?
Thnx in advance!
You can register your consumer so that MassTransit will resolve it from the IServiceProvider using the support provided in the MassTransit.Extensions.DependencyInjection package.
x.ReceiveEndpoint(host, "externalsystems.update", e =>
{
e.Consumer<UpdatesConsumer>(_serviceProvider);
});
Be sure to register your UpdatesConsumer in the container as well. This should resolve a new instance of the consumer for each message received on the endpoint.
Why not register Bus using Microsoft Dependency Injection. It should fix your issue, it will Resolve your consumer using IServiceProvider
I got a project built under ASP Core 2 that utilizes the Quartz.NET scheduler 3-beta1
I've got the following job that i want to execute:
public class TestJob: IJob
{
private readonly AppDbContext _dbContext;
public TestJob(AppDbContext dbContext)
{
_dbContext = dbContext;
}
public Task Execute(IJobExecutionContext context)
{
Debug.WriteLine("Test check at " + DateTime.Now);
var testRun = _dbContext.TestTable.Where(o => o.CheckNumber > 10).ToList();
Debug.WriteLine(testRun.Count);
return Task.CompletedTask;
}
}
Unfortunately it never works and there are not error logs to indicate an issue.
Yet when i remove everything and just leave the Debug.WriteLine it works as per below example.
public class TestJob: IJob
{
public Task Execute(IJobExecutionContext context)
{
Debug.WriteLine("Test check at " + DateTime.Now);
return Task.CompletedTask;
}
}
How can i get my job to execute the database call?
EDIT 1: Job Creation
var schedulerFactory = new StdSchedulerFactory(properties);
_scheduler = schedulerFactory.GetScheduler().Result;
_scheduler.Start().Wait();
var testJob = JobBuilder.Create<TestJob>()
.WithIdentity("TestJobIdentity")
.Build();
var testTrigger = TriggerBuilder.Create()
.WithIdentity("TestJobTrigger")
.StartNow()
.WithSimpleSchedule(x => x.WithIntervalInMinutes(1).RepeatForever())
.Build();
if (CheckIfJobRegistered(testJob.Key).Result == false)
_scheduler.ScheduleJob(testJob, testTrigger).Wait();
The main problem here is that Quartz can't create the job and swallows the exception.
The Documentation states:
When a trigger fires, the JobDetail (instance definition) it is associated to is loaded, and the job class it refers to is instantiated via the JobFactory configured on the Scheduler. The default JobFactory simply calls the default constructor of the job class using Activator.CreateInstance, then attempts to call setter properties on the class that match the names of keys within the JobDataMap. You may want to create your own implementation of JobFactory to accomplish things such as having your application’s IoC or DI container produce/initialize the job instance.
Quartz provides the IJobFactory to achieve that. And it works really good with Dependency Injection. A JobFactory can look like this:
public class JobFactory : IJobFactory
{
//TypeFactory is just the DI Container of your choice
protected readonly TypeFactory Factory;
public JobFactory(TypeFactory factory)
{
Factory = factory;
}
public IJob NewJob(TriggerFiredBundle bundle, IScheduler scheduler)
{
try
{
return Factory.Create(bundle.JobDetail.JobType) as IJob;
}
catch (Exception e)
{
//Log the error and return null
//every exception thrown will be swallowed by Quartz
return null;
}
}
public void ReturnJob(IJob job)
{
//Don't forget to implement this,
//or the memory will not released
Factory.Release(job);
}
}
Then just register your JobFactory with the scheduler and everything should work:
_scheduler.JobFactory = new JobFactory(/*container of choice*/);
Edit:
Additionally you can take a look to one of my previous answers.
I have the following class
public class MyEmailService
{
public async Task<bool> SendAdminEmails()
{
...
}
public async Task<bool> SendUserEmails()
{
...
}
}
public interface IMyEmailService
{
Task<bool> SendAdminEmails();
Task<bool> SendUserEmails();
}
I have installed the latest Quartz 2.4.1 Nuget package as I wanted a lightweight scheduler in my web app without a separate SQL Server database.
I need to schedule the methods
SendUserEmails to run every week on Mondays 17:00,Tuesdays 17:00 & Wednesdays 17:00
SendAdminEmails to run every week on Thursdays 09:00, Fridays 9:00
What code do I need to schedule these methods using Quartz in ASP.NET Core? I also need to know how to start Quartz in ASP.NET Core as all code samples on the internet still refer to previous versions of ASP.NET.
I can find a code sample for the previous version of ASP.NET but I don't know how to start Quartz in ASP.NET Core to start testing.
Where do I put the JobScheduler.Start(); in ASP.NET Core?
TL;DR (full answer can be found below)
Assumed tooling: Visual Studio 2017 RTM, .NET Core 1.1, .NET Core SDK 1.0, SQL Server Express 2016 LocalDB.
In web application .csproj:
<Project Sdk="Microsoft.NET.Sdk.Web">
<!-- .... existing contents .... -->
<!-- add the following ItemGroup element, it adds required packages -->
<ItemGroup>
<PackageReference Include="Quartz" Version="3.0.0-alpha2" />
<PackageReference Include="Quartz.Serialization.Json" Version="3.0.0-alpha2" />
</ItemGroup>
</Project>
In the Program class (as scaffolded by Visual Studio by default):
public class Program
{
private static IScheduler _scheduler; // add this field
public static void Main(string[] args)
{
var host = new WebHostBuilder()
.UseKestrel()
.UseContentRoot(Directory.GetCurrentDirectory())
.UseIISIntegration()
.UseStartup<Startup>()
.UseApplicationInsights()
.Build();
StartScheduler(); // add this line
host.Run();
}
// add this method
private static void StartScheduler()
{
var properties = new NameValueCollection {
// json serialization is the one supported under .NET Core (binary isn't)
["quartz.serializer.type"] = "json",
// the following setup of job store is just for example and it didn't change from v2
// according to your usage scenario though, you definitely need
// the ADO.NET job store and not the RAMJobStore.
["quartz.jobStore.type"] = "Quartz.Impl.AdoJobStore.JobStoreTX, Quartz",
["quartz.jobStore.useProperties"] = "false",
["quartz.jobStore.dataSource"] = "default",
["quartz.jobStore.tablePrefix"] = "QRTZ_",
["quartz.jobStore.driverDelegateType"] = "Quartz.Impl.AdoJobStore.SqlServerDelegate, Quartz",
["quartz.dataSource.default.provider"] = "SqlServer-41", // SqlServer-41 is the new provider for .NET Core
["quartz.dataSource.default.connectionString"] = #"Server=(localdb)\MSSQLLocalDB;Database=Quartz;Integrated Security=true"
};
var schedulerFactory = new StdSchedulerFactory(properties);
_scheduler = schedulerFactory.GetScheduler().Result;
_scheduler.Start().Wait();
var userEmailsJob = JobBuilder.Create<SendUserEmailsJob>()
.WithIdentity("SendUserEmails")
.Build();
var userEmailsTrigger = TriggerBuilder.Create()
.WithIdentity("UserEmailsCron")
.StartNow()
.WithCronSchedule("0 0 17 ? * MON,TUE,WED")
.Build();
_scheduler.ScheduleJob(userEmailsJob, userEmailsTrigger).Wait();
var adminEmailsJob = JobBuilder.Create<SendAdminEmailsJob>()
.WithIdentity("SendAdminEmails")
.Build();
var adminEmailsTrigger = TriggerBuilder.Create()
.WithIdentity("AdminEmailsCron")
.StartNow()
.WithCronSchedule("0 0 9 ? * THU,FRI")
.Build();
_scheduler.ScheduleJob(adminEmailsJob, adminEmailsTrigger).Wait();
}
}
An example of a job class:
public class SendUserEmailsJob : IJob
{
public Task Execute(IJobExecutionContext context)
{
// an instance of email service can be obtained in different ways,
// e.g. service locator, constructor injection (requires custom job factory)
IMyEmailService emailService = new MyEmailService();
// delegate the actual work to email service
return emailService.SendUserEmails();
}
}
Full answer
Quartz for .NET Core
First, you have to use v3 of Quartz, as it targets .NET Core, according to this announcement.
Currently, only alpha versions of v3 packages are available on NuGet. It looks like the team put a lot of effort into releasing 2.5.0, which does not target .NET Core. Nevertheless, in their GitHub repo, the master branch is already dedicated to v3, and basically, open issues for v3 release don't seem to be critical, mostly old wishlist items, IMHO. Since recent commit activity is quite low, I would expect v3 release in few months, or maybe half year - but no one knows.
Jobs and IIS recycling
If the web application is going to be hosted under IIS, you have to take into consideration recycling/unloading behavior of worker processes. The ASP.NET Core web app runs as a regular .NET Core process, separate from w3wp.exe - IIS only serves as a reverse proxy. Nevertheless, when an instance of w3wp.exe is recycled or unloaded, the related .NET Core app process is also signaled to exit (according to this).
Web application can also be self-hosted behind a non-IIS reverse proxy (e.g. NGINX), but I will assume that you do use IIS, and narrow my answer accordingly.
The problems that recycling/unloading introduces are explained well in the post referenced by #darin-dimitrov:
If for example, on Friday 9:00 the process is down, because several hours earlier it was unloaded by IIS due to inactivity - no admin emails will be sent until the process is up again. To avoid that, configure IIS to minimize unloads/recyclings (see this answer).
From my experience, the above configuration still doesn't give a 100% guarantee that IIS will never unload the application. For 100% guarantee that your process is up, you can setup a command that periodically sends requests to your application, and thus keeps it alive.
When the host process is recycled/unloaded, the jobs must be gracefully stopped, to avoid data corruption.
Why would you host scheduled jobs in a web app
I can think of one justification of having those email jobs hosted in a web app, despite the problems listed above. It is decision to have only one kind of application model (ASP.NET). Such approach simplifies learning curve, deployment procedure, production monitoring, etc.
If you don't want to introduce backend microservices (which would be a good place to move the email jobs to), then it makes sense to overcome IIS recycling/unloading behaviors, and run Quartz inside a web app.
Or maybe you have other reasons.
Persistent job store
In your scenario, status of job execution must be persisted out of process. Therefore, default RAMJobStore doesn't fit, and you have to use the ADO.NET Job Store.
Since you mentioned SQL Server in the question, I will provide example setup for SQL Server database.
How to start (and gracefully stop) the scheduler
I assume you use Visual Studio 2017 and latest/recent version of .NET Core tooling. Mine is .NET Core Runtime 1.1 and .NET Core SDK 1.0.
For DB setup example, I will use a database named Quartz in SQL Server 2016 Express LocalDB. DB setup scripts can be found here.
First, add required package references to web application .csproj (or do it with NuGet package manager GUI in Visual Studio):
<Project Sdk="Microsoft.NET.Sdk.Web">
<!-- .... existing contents .... -->
<!-- the following ItemGroup adds required packages -->
<ItemGroup>
<PackageReference Include="Quartz" Version="3.0.0-alpha2" />
<PackageReference Include="Quartz.Serialization.Json" Version="3.0.0-alpha2" />
</ItemGroup>
</Project>
With the help of Migration Guide and the V3 Tutorial, we can figure out how to start and stop the scheduler. I prefer to encapsulate this in a separate class, let's name it QuartzStartup.
using System;
using System.Collections.Specialized;
using System.Threading.Tasks;
using Quartz;
using Quartz.Impl;
namespace WebApplication1
{
// Responsible for starting and gracefully stopping the scheduler.
public class QuartzStartup
{
private IScheduler _scheduler; // after Start, and until shutdown completes, references the scheduler object
// starts the scheduler, defines the jobs and the triggers
public void Start()
{
if (_scheduler != null)
{
throw new InvalidOperationException("Already started.");
}
var properties = new NameValueCollection {
// json serialization is the one supported under .NET Core (binary isn't)
["quartz.serializer.type"] = "json",
// the following setup of job store is just for example and it didn't change from v2
["quartz.jobStore.type"] = "Quartz.Impl.AdoJobStore.JobStoreTX, Quartz",
["quartz.jobStore.useProperties"] = "false",
["quartz.jobStore.dataSource"] = "default",
["quartz.jobStore.tablePrefix"] = "QRTZ_",
["quartz.jobStore.driverDelegateType"] = "Quartz.Impl.AdoJobStore.SqlServerDelegate, Quartz",
["quartz.dataSource.default.provider"] = "SqlServer-41", // SqlServer-41 is the new provider for .NET Core
["quartz.dataSource.default.connectionString"] = #"Server=(localdb)\MSSQLLocalDB;Database=Quartz;Integrated Security=true"
};
var schedulerFactory = new StdSchedulerFactory(properties);
_scheduler = schedulerFactory.GetScheduler().Result;
_scheduler.Start().Wait();
var userEmailsJob = JobBuilder.Create<SendUserEmailsJob>()
.WithIdentity("SendUserEmails")
.Build();
var userEmailsTrigger = TriggerBuilder.Create()
.WithIdentity("UserEmailsCron")
.StartNow()
.WithCronSchedule("0 0 17 ? * MON,TUE,WED")
.Build();
_scheduler.ScheduleJob(userEmailsJob, userEmailsTrigger).Wait();
var adminEmailsJob = JobBuilder.Create<SendAdminEmailsJob>()
.WithIdentity("SendAdminEmails")
.Build();
var adminEmailsTrigger = TriggerBuilder.Create()
.WithIdentity("AdminEmailsCron")
.StartNow()
.WithCronSchedule("0 0 9 ? * THU,FRI")
.Build();
_scheduler.ScheduleJob(adminEmailsJob, adminEmailsTrigger).Wait();
}
// initiates shutdown of the scheduler, and waits until jobs exit gracefully (within allotted timeout)
public void Stop()
{
if (_scheduler == null)
{
return;
}
// give running jobs 30 sec (for example) to stop gracefully
if (_scheduler.Shutdown(waitForJobsToComplete: true).Wait(30000))
{
_scheduler = null;
}
else
{
// jobs didn't exit in timely fashion - log a warning...
}
}
}
}
Note 1. In the above example, SendUserEmailsJob and SendAdminEmailsJob are classes that implement IJob. The IJob interface is slightly different from IMyEmailService, because it returns void Task and not Task<bool>. Both job classes should get IMyEmailService as a dependency (probably constructor injection).
Note 2. For a long-running job to be able to exit in timely fashion, in the IJob.Execute method, it should observe the status of IJobExecutionContext.CancellationToken. This may require change in IMyEmailService interface, to make its methods receive CancellationToken parameter:
public interface IMyEmailService
{
Task<bool> SendAdminEmails(CancellationToken cancellation);
Task<bool> SendUserEmails(CancellationToken cancellation);
}
When and where to start and stop the scheduler
In ASP.NET Core, application bootstrap code resides in class Program, much like in console app. The Main method is called to create web host, run it, and wait until it exits:
public class Program
{
public static void Main(string[] args)
{
var host = new WebHostBuilder()
.UseKestrel()
.UseContentRoot(Directory.GetCurrentDirectory())
.UseIISIntegration()
.UseStartup<Startup>()
.UseApplicationInsights()
.Build();
host.Run();
}
}
The simplest thing to do is just put a call to QuartzStartup.Start right in the Main method, much like as I did in TL;DR. But since we have to properly handle process shutdown as well, I prefer to hook both startup and shutdown code in a more consistent manner.
This line:
.UseStartup<Startup>()
refers to a class named Startup, which is scaffolded when creating new ASP.NET Core Web Application project in Visual Studio. The Startup class looks like this:
public class Startup
{
public Startup(IHostingEnvironment env)
{
// scaffolded code...
}
public IConfigurationRoot Configuration { get; }
// This method gets called by the runtime. Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
// scaffolded code...
}
// This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
// scaffolded code...
}
}
It is clear that a call to QuartzStartup.Start should be inserted in one of methods in the Startup class. The question is, where QuartzStartup.Stop should be hooked.
In the legacy .NET Framework, ASP.NET provided IRegisteredObject interface. According to this post, and the documentation, in ASP.NET Core it was replaced with IApplicationLifetime. Bingo. An instance of IApplicationLifetime can be injected into Startup.Configure method through a parameter.
For consistency, I will hook both QuartzStartup.Start and QuartzStartup.Stop to IApplicationLifetime:
public class Startup
{
// This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(
IApplicationBuilder app,
IHostingEnvironment env,
ILoggerFactory loggerFactory,
IApplicationLifetime lifetime) // added this parameter
{
// the following 3 lines hook QuartzStartup into web host lifecycle
var quartz = new QuartzStartup();
lifetime.ApplicationStarted.Register(quartz.Start);
lifetime.ApplicationStopping.Register(quartz.Stop);
// .... original scaffolded code here ....
}
// ....the rest of the scaffolded members ....
}
Note that I have extended the signature of the Configure method with an additional IApplicationLifetime parameter. According to documentation, ApplicationStopping will block until registered callbacks are completed.
Graceful shutdown on IIS Express, and ASP.NET Core module
I was able to observe expected behavior of IApplicationLifetime.ApplicationStopping hook only on IIS, with the latest ASP.NET Core module installed. Both IIS Express (installed with Visual Studio 2017 Community RTM), and IIS with an outdated version of ASP.NET Core module didn't consistently invoke IApplicationLifetime.ApplicationStopping. I believe it is because of this bug that was fixed.
You can install latest version of ASP.NET Core module from here. Follow the instructions in the "Installing the latest ASP.NET Core Module" section.
Quartz vs. FluentScheduler
I also took a look at FluentScheduler, as it was proposed as an alternative library by #Brice Molesti. To my first impression, FluentScheduler is quite a simplistic and immature solution, compared to Quartz. For example, FluentScheduler doesn't provide such fundamental features as job status persistence and clustered execution.
In addition to #felix-b answer. Adding DI to jobs. Also QuartzStartup Start can be made async.
Based on this answer: https://stackoverflow.com/a/42158004/1235390
public class QuartzStartup
{
public QuartzStartup(IServiceProvider serviceProvider)
{
_serviceProvider = serviceProvider;
}
public async Task Start()
{
// other code is same
_scheduler = await schedulerFactory.GetScheduler();
_scheduler.JobFactory = new JobFactory(_serviceProvider);
await _scheduler.Start();
var sampleJob = JobBuilder.Create<SampleJob>().Build();
var sampleTrigger = TriggerBuilder.Create().StartNow().WithCronSchedule("0 0/1 * * * ?").Build();
await _scheduler.ScheduleJob(sampleJob, sampleTrigger);
}
}
JobFactory class
public class JobFactory : IJobFactory
{
private IServiceProvider _serviceProvider;
public JobFactory(IServiceProvider serviceProvider)
{
_serviceProvider = serviceProvider;
}
public IJob NewJob(TriggerFiredBundle bundle, IScheduler scheduler)
{
return _serviceProvider.GetService(bundle.JobDetail.JobType) as IJob;
}
public void ReturnJob(IJob job)
{
(job as IDisposable)?.Dispose();
}
}
Startup class:
public void ConfigureServices(IServiceCollection services)
{
// other code is removed for brevity
// need to register all JOBS by their class name
services.AddTransient<SampleJob>();
}
public void Configure(IApplicationBuilder app, IHostingEnvironment env, IApplicationLifetime applicationLifetime)
{
var quartz = new QuartzStartup(_services.BuildServiceProvider());
applicationLifetime.ApplicationStarted.Register(() => quartz.Start());
applicationLifetime.ApplicationStopping.Register(quartz.Stop);
// other code removed for brevity
}
SampleJob class with contructor dependency injection:
public class SampleJob : IJob
{
private readonly ILogger<SampleJob> _logger;
public SampleJob(ILogger<SampleJob> logger)
{
_logger = logger;
}
public async Task Execute(IJobExecutionContext context)
{
_logger.LogDebug("Execute called");
}
}
I don't know how to do it with Quartz, but i had experimented the same scenario with an other library wich works very well. Here how I dit it
Install FluentScheduler
Install-Package FluentScheduler
Use it like this
var registry = new Registry();
JobManager.Initialize(registry);
JobManager.AddJob(() => MyEmailService.SendAdminEmails(), s => s
.ToRunEvery(1)
.Weeks()
.On(DayOfWeek.Monday)
.At(17, 00));
JobManager.AddJob(() => MyEmailService.SendAdminEmails(), s => s
.ToRunEvery(1)
.Weeks()
.On(DayOfWeek.Wednesday)
.At(17, 00));
JobManager.AddJob(() => MyEmailService.SendUserEmails(), s => s
.ToRunEvery(1)
.Weeks()
.On(DayOfWeek.Thursday)
.At(09, 00));
JobManager.AddJob(() => MyEmailService.SendUserEmails(), s => s
.ToRunEvery(1)
.Weeks()
.On(DayOfWeek.Friday)
.At(09, 00));
Documentation can be found here FluentScheduler on GitHub
What code do I need to schedule these methods using Quartz in ASP.NET Core? I also need to know how to start Quartz in ASP.NET Core as all code samples on the internet still refer to previous versions of ASP.NET.
Hi, there is now a good quartz DI to initialize and use
[DisallowConcurrentExecution]
public class Job1 : IJob
{
private readonly ILogger<Job1> _logger;
public Job1(ILogger<Job1> logger)
{
_logger = logger;
}
public async Task Execute(IJobExecutionContext context)
{
_logger.LogInformation("Start job1");
await Task.Delay(2, context.CancellationToken);
_logger?.LogInformation("End job1");
}
}
public class Startup
{
public Startup(IConfiguration configuration)
{
Configuration = configuration;
}
public IConfiguration Configuration { get; }
// This method gets called by the runtime. Use this method to add services to the container.
public void ConfigureServices(IServiceCollection services)
{
services.AddControllers();
services.AddQuartz(cfg =>
{
cfg.UseMicrosoftDependencyInjectionJobFactory(opt =>
{
opt.AllowDefaultConstructor = false;
});
cfg.AddJob<Job1>(jobCfg =>
{
jobCfg.WithIdentity("job1");
});
cfg.AddTrigger(trigger =>
{
trigger
.ForJob("job1")
.WithIdentity("trigger1")
.WithSimpleSchedule(x => x
.WithIntervalInSeconds(10)
.RepeatForever());
});
});
services.AddQuartzHostedService(opt =>
{
opt.WaitForJobsToComplete = true;
});
}
// This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
// standart impl
}
}
The accepted answer covers the topic very well, but some things have changed with the latest Quartz version. The following is based on this article shows a quick start with Quartz 3.0.x and ASP.NET Core 2.2:
Util class
public class QuartzServicesUtilities
{
public static void StartJob<TJob>(IScheduler scheduler, TimeSpan runInterval)
where TJob : IJob
{
var jobName = typeof(TJob).FullName;
var job = JobBuilder.Create<TJob>()
.WithIdentity(jobName)
.Build();
var trigger = TriggerBuilder.Create()
.WithIdentity($"{jobName}.trigger")
.StartNow()
.WithSimpleSchedule(scheduleBuilder =>
scheduleBuilder
.WithInterval(runInterval)
.RepeatForever())
.Build();
scheduler.ScheduleJob(job, trigger);
}
}
Job factory
public class QuartzJobFactory : IJobFactory
{
private readonly IServiceProvider _serviceProvider;
public QuartzJobFactory(IServiceProvider serviceProvider)
{
_serviceProvider = serviceProvider;
}
public IJob NewJob(TriggerFiredBundle bundle, IScheduler scheduler)
{
var jobDetail = bundle.JobDetail;
var job = (IJob)_serviceProvider.GetService(jobDetail.JobType);
return job;
}
public void ReturnJob(IJob job) { }
}
A job sample that also deals with exiting on application pool recycle / exit
[DisallowConcurrentExecution]
public class TestJob : IJob
{
private ILoggingService Logger { get; }
private IApplicationLifetime ApplicationLifetime { get; }
private static object lockHandle = new object();
private static bool shouldExit = false;
public TestJob(ILoggingService loggingService, IApplicationLifetime applicationLifetime)
{
Logger = loggingService;
ApplicationLifetime = applicationLifetime;
}
public Task Execute(IJobExecutionContext context)
{
return Task.Run(() =>
{
ApplicationLifetime.ApplicationStopping.Register(() =>
{
lock (lockHandle)
{
shouldExit = true;
}
});
try
{
for (int i = 0; i < 10; i ++)
{
lock (lockHandle)
{
if (shouldExit)
{
Logger.LogDebug($"TestJob detected that application is shutting down - exiting");
break;
}
}
Logger.LogDebug($"TestJob ran step {i+1}");
Thread.Sleep(3000);
}
}
catch (Exception exc)
{
Logger.LogError(exc, "An error occurred during execution of scheduled job");
}
});
}
}
Startup.cs configuration
private void ConfigureQuartz(IServiceCollection services, params Type[] jobs)
{
services.AddSingleton<IJobFactory, QuartzJobFactory>();
services.Add(jobs.Select(jobType => new ServiceDescriptor(jobType, jobType, ServiceLifetime.Singleton)));
services.AddSingleton(provider =>
{
var schedulerFactory = new StdSchedulerFactory();
var scheduler = schedulerFactory.GetScheduler().Result;
scheduler.JobFactory = provider.GetService<IJobFactory>();
scheduler.Start();
return scheduler;
});
}
protected void ConfigureJobsIoc(IServiceCollection services)
{
ConfigureQuartz(services, typeof(TestJob), /* other jobs come here */);
}
public void ConfigureServices(IServiceCollection services)
{
ConfigureJobsIoc(services);
// other stuff comes here
AddDbContext(services);
AddCors(services);
services
.AddMvc()
.SetCompatibilityVersion(CompatibilityVersion.Version_2_2);
}
protected void StartJobs(IApplicationBuilder app, IApplicationLifetime lifetime)
{
var scheduler = app.ApplicationServices.GetService<IScheduler>();
//TODO: use some config
QuartzServicesUtilities.StartJob<TestJob>(scheduler, TimeSpan.FromSeconds(60));
lifetime.ApplicationStarted.Register(() => scheduler.Start());
lifetime.ApplicationStopping.Register(() => scheduler.Shutdown());
}
public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory,
ILoggingService logger, IApplicationLifetime lifetime)
{
StartJobs(app, lifetime);
// other stuff here
}
I'm trying to implement a service that will run jobs based on Quartz.Net. The jobs may have dependencies like IRepository<> and the repository implementation will have a NHibernate ISession injected into it. (Quartz will be hosted in a Windows Service). Jobs are resolved via a IJob factory implementation that uses Ninject to resolve (currently wrapped in a IServiceLocator implementation).
Job Scope
I would like to be able to use Ninject to scope the ISession per Job so that there is one session created per job that may be used in multiple IRepository<>'s .
Not sure if this is possible but am wondering if anyone has experience with this?
Can I somehow use the Job context to create a Scope that is used by Kernel.InScope(???).
Quartz.Net IJobFactory:
public class JobFactory : IJobFactory
{
readonly IServiceLocator locator;
public JobFactory(IServiceLocator locator)
{
this.locator = locator;
}
public IJob NewJob(TriggerFiredBundle bundle, IScheduler scheduler)
{
try
{
var jobDetail = bundle.JobDetail;
var jobType = jobDetail.JobType;
return (IJob)locator.Resolve(jobType);
}
catch (Exception e)
{
var se = new SchedulerException("Problem instantiating class", e);
throw se;
}
}
}
Ninject Bindings:
//Service Locator
Bind<IServiceLocator>().To<NinjectAdapter>();
//Quartz Bindings
Bind<IJobFactory>().To<JobFactory>();
//NHibernate Bindings
Bind<ISessionFactory>().ToMethod(ctx => ctx.Kernel.Get<NHibernateConfiguration>().BuildSessionFactory()).InSingletonScope();
Bind<ISession>().ToMethod(ctx => ctx.Kernel.Get<ISessionFactory>().OpenSession());// ToDo: Figure out how to scope session
//Repository Bindings
Bind(typeof (IRepository<>)).To(typeof (ReadWriteRepository<>));
Main Execution:
InitializeIoC();
scheduler = schedulerFactory.GetScheduler();
scheduler.JobFactory = ServiceLocator.Resolve<IJobFactory>();
InitializeJobs();
scheduler.Start();
Example Job:
public class TestJob3 : IJob
{
private readonly IRepository<Customer> repo;
private readonly IRepository<Order> orderRepo;
public TestJob3(IRepository<Customer> repo, IRepository<Order> orderRepo)
{
//orderRepo and repo should have the same ISession
this.repo = repo;
this.oderRepo = orderRepo;
System.Diagnostics.Debug.WriteLine("Job 3 Created");
}
#region Implementation of IJob
public void Execute(IJobExecutionContext context)
{
System.Diagnostics.Debug.WriteLine("Job 3 Executing");
using (var scope = new TransactionScope())
{
var customer = repo.GetById(1);
customer.Name = "Blue Goats";
repo.Save(customer);
scope.Complete();
}
}
#endregion
}
** Repository Snippet: **
public class ReadWriteRepository<TEntity> : IRepository<TEntity> where TEntity : class, IRootEntity
{
private readonly ISession session;
public ReadWriteRepository(ISession session)
{
this.session = session;
}
public virtual TEntity GetById(int id)
{
var entity = session.Get<TEntity>(id);
return entity;
}
public virtual TEntity Save(TEntity entity)
{
session.SaveOrUpdate(entity);
return entity;
}
}
Thanks for taking the time!
Update
I ended up using Remo's suggestion and am using InCallScope():
Bind<ISession>().ToMethod(ctx => ctx.Kernel.Get<ISessionFactory>().OpenSession()).InCallScope();
The way I like to think of it (correct or not?) is everything from the "initial" get reuses the same items throughout the dependency tree
Use InCallScope
https://github.com/ninject/ninject.extensions.namedscope/wiki/InCallScope