Animating plots for multi object motion - python - matplotlib

I am trying to plot an animation of the motion of several different ships in a North-East frame. Each ship is identified by a circle marker, color, and an ID. The vessel information is stored in a list of Vessel objects each with a positions attribute which stores north and east coordinates.
I only want to keep the newest ship's position, so all earlier points should be cleared.
What I have written so far plots the dots but I cannot find a way to specify additional parameters such as name and color arguments. I would prefer to not have to create an individual line object for each vessel because the IDs are not necessarily sorted and there may be a need for static object in the future which are stored in a separate list.
The code I have so far is
def plot_animation(vessels, objects, ts=10, n_min=3, **kwargs):
import matplotlib.animation as animation
"""Plots the results of a simulation
input:
vessels: List of `Vessel()` type
n_min: The number of minutes between each position scatter point
**kwargs: Keyword arguments for the plotting commands
output:
None
"""
pos_marker = kwargs.get("pos_marker", "o") # options
pos_marker_size = kwargs.get("pos_marker_size", 50)
frames = len(vessels[0].get_positions()) # number of simulation time-points
axis_min = 0
axis_max = 0
for v in vessels: # for determining axis bounds
positions = v.get_positions()
axis_min = min(min([min(pos) for pos in positions]), axis_min)
axis_max = max(max([max(pos) for pos in positions]), axis_max)
fig = plt.figure()
ax = fig.add_subplot(
111, autoscale_on=False, xlim=(axis_min, axis_max), ylim=(axis_min, axis_max)
)
ax.set_aspect("equal")
ax.grid()
ax.set_xlabel("East [km]")
ax.set_ylabel("North [km]")
(line,) = ax.plot([], [], "o")
def init():
line.set_data([], [])
return (line,)
def animate(i):
x = []
y = []
for v in vessels:
positions = v.get_positions()
north = positions[i].north
east = positions[i].east
x.append(east)
y.append(north)
line.set_data(x, y)
return (line,)
ani = animation.FuncAnimation(
fig, animate, frames=frames, init_func=init, blit=True
)
plt.show()

Related

How to show precentage in Seaborn countplot [duplicate]

I was wondering if it is possible to create a Seaborn count plot, but instead of actual counts on the y-axis, show the relative frequency (percentage) within its group (as specified with the hue parameter).
I sort of fixed this with the following approach, but I can't imagine this is the easiest approach:
# Plot percentage of occupation per income class
grouped = df.groupby(['income'], sort=False)
occupation_counts = grouped['occupation'].value_counts(normalize=True, sort=False)
occupation_data = [
{'occupation': occupation, 'income': income, 'percentage': percentage*100} for
(income, occupation), percentage in dict(occupation_counts).items()
]
df_occupation = pd.DataFrame(occupation_data)
p = sns.barplot(x="occupation", y="percentage", hue="income", data=df_occupation)
_ = plt.setp(p.get_xticklabels(), rotation=90) # Rotate labels
Result:
I'm using the well known adult data set from the UCI machine learning repository. The pandas dataframe is created like this:
# Read the adult dataset
df = pd.read_csv(
"data/adult.data",
engine='c',
lineterminator='\n',
names=['age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'sex',
'capital_gain', 'capital_loss', 'hours_per_week',
'native_country', 'income'],
header=None,
skipinitialspace=True,
na_values="?"
)
This question is sort of related, but does not make use of the hue parameter. And in my case I cannot just change the labels on the y-axis, because the height of the bar must depend on the group.
With newer versions of seaborn you can do following:
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(color_codes=True)
df = sns.load_dataset('titanic')
df.head()
x,y = 'class', 'survived'
(df
.groupby(x)[y]
.value_counts(normalize=True)
.mul(100)
.rename('percent')
.reset_index()
.pipe((sns.catplot,'data'), x=x,y='percent',hue=y,kind='bar'))
output
Update: Also show percentages on top of barplots
If you also want percentages, you can do following:
import numpy as np
import pandas as pd
import seaborn as sns
df = sns.load_dataset('titanic')
df.head()
x,y = 'class', 'survived'
df1 = df.groupby(x)[y].value_counts(normalize=True)
df1 = df1.mul(100)
df1 = df1.rename('percent').reset_index()
g = sns.catplot(x=x,y='percent',hue=y,kind='bar',data=df1)
g.ax.set_ylim(0,100)
for p in g.ax.patches:
txt = str(p.get_height().round(2)) + '%'
txt_x = p.get_x()
txt_y = p.get_height()
g.ax.text(txt_x,txt_y,txt)
I might be confused. The difference between your output and the output of
occupation_counts = (df.groupby(['income'])['occupation']
.value_counts(normalize=True)
.rename('percentage')
.mul(100)
.reset_index()
.sort_values('occupation'))
p = sns.barplot(x="occupation", y="percentage", hue="income", data=occupation_counts)
_ = plt.setp(p.get_xticklabels(), rotation=90) # Rotate labels
is, it seems to me, only the order of the columns.
And you seem to care about that, since you pass sort=False. But then, in your code the order is determined uniquely by chance (and the order in which the dictionary is iterated even changes from run to run with Python 3.5).
You could do this with sns.histplot by setting the following properties:
stat = 'density' (this will make the y-axis the density rather than count)
common_norm = False (this will normalize each density independently)
See the simple example below:
import numpy as np
import pandas as pd
import seaborn as sns
df = sns.load_dataset('titanic')
ax = sns.histplot(x = df['class'], hue=df['survived'], multiple="dodge",
stat = 'density', shrink = 0.8, common_norm=False)
You can use the library Dexplot to do counting as well as normalizing over any variable to get relative frequencies.
Pass the count function the name of the variable you would like to count and it will automatically produce a bar plot of the counts of all unique values. Use split to subdivide the counts by another variable. Notice that Dexplot automatically wraps the x-tick labels.
dxp.count('occupation', data=df, split='income')
Use the normalize parameter to normalize the counts over any variable (or combination of variables with a list). You can also use True to normalize over the grand total of counts.
dxp.count('occupation', data=df, split='income', normalize='income')
It boggled my mind that Seaborn doesn't provide anything like this out of the box.
Still, it was pretty easy to tweak the source code to get what you wanted.
The following code, with the function "percentageplot(x, hue, data)" works just like sns.countplot, but norms each bar per group (i.e. divides each green bar's value by the sum of all green bars)
In effect, it turns this (hard to interpret because different N of Apple vs. Android):
sns.countplot
into this (Normed so that bars reflect proportion of total for Apple, vs Android):
Percentageplot
Hope this helps!!
from seaborn.categorical import _CategoricalPlotter, remove_na
import matplotlib as mpl
class _CategoricalStatPlotter(_CategoricalPlotter):
#property
def nested_width(self):
"""A float with the width of plot elements when hue nesting is used."""
return self.width / len(self.hue_names)
def estimate_statistic(self, estimator, ci, n_boot):
if self.hue_names is None:
statistic = []
confint = []
else:
statistic = [[] for _ in self.plot_data]
confint = [[] for _ in self.plot_data]
for i, group_data in enumerate(self.plot_data):
# Option 1: we have a single layer of grouping
# --------------------------------------------
if self.plot_hues is None:
if self.plot_units is None:
stat_data = remove_na(group_data)
unit_data = None
else:
unit_data = self.plot_units[i]
have = pd.notnull(np.c_[group_data, unit_data]).all(axis=1)
stat_data = group_data[have]
unit_data = unit_data[have]
# Estimate a statistic from the vector of data
if not stat_data.size:
statistic.append(np.nan)
else:
statistic.append(estimator(stat_data, len(np.concatenate(self.plot_data))))
# Get a confidence interval for this estimate
if ci is not None:
if stat_data.size < 2:
confint.append([np.nan, np.nan])
continue
boots = bootstrap(stat_data, func=estimator,
n_boot=n_boot,
units=unit_data)
confint.append(utils.ci(boots, ci))
# Option 2: we are grouping by a hue layer
# ----------------------------------------
else:
for j, hue_level in enumerate(self.hue_names):
if not self.plot_hues[i].size:
statistic[i].append(np.nan)
if ci is not None:
confint[i].append((np.nan, np.nan))
continue
hue_mask = self.plot_hues[i] == hue_level
group_total_n = (np.concatenate(self.plot_hues) == hue_level).sum()
if self.plot_units is None:
stat_data = remove_na(group_data[hue_mask])
unit_data = None
else:
group_units = self.plot_units[i]
have = pd.notnull(
np.c_[group_data, group_units]
).all(axis=1)
stat_data = group_data[hue_mask & have]
unit_data = group_units[hue_mask & have]
# Estimate a statistic from the vector of data
if not stat_data.size:
statistic[i].append(np.nan)
else:
statistic[i].append(estimator(stat_data, group_total_n))
# Get a confidence interval for this estimate
if ci is not None:
if stat_data.size < 2:
confint[i].append([np.nan, np.nan])
continue
boots = bootstrap(stat_data, func=estimator,
n_boot=n_boot,
units=unit_data)
confint[i].append(utils.ci(boots, ci))
# Save the resulting values for plotting
self.statistic = np.array(statistic)
self.confint = np.array(confint)
# Rename the value label to reflect the estimation
if self.value_label is not None:
self.value_label = "{}({})".format(estimator.__name__,
self.value_label)
def draw_confints(self, ax, at_group, confint, colors,
errwidth=None, capsize=None, **kws):
if errwidth is not None:
kws.setdefault("lw", errwidth)
else:
kws.setdefault("lw", mpl.rcParams["lines.linewidth"] * 1.8)
for at, (ci_low, ci_high), color in zip(at_group,
confint,
colors):
if self.orient == "v":
ax.plot([at, at], [ci_low, ci_high], color=color, **kws)
if capsize is not None:
ax.plot([at - capsize / 2, at + capsize / 2],
[ci_low, ci_low], color=color, **kws)
ax.plot([at - capsize / 2, at + capsize / 2],
[ci_high, ci_high], color=color, **kws)
else:
ax.plot([ci_low, ci_high], [at, at], color=color, **kws)
if capsize is not None:
ax.plot([ci_low, ci_low],
[at - capsize / 2, at + capsize / 2],
color=color, **kws)
ax.plot([ci_high, ci_high],
[at - capsize / 2, at + capsize / 2],
color=color, **kws)
class _BarPlotter(_CategoricalStatPlotter):
"""Show point estimates and confidence intervals with bars."""
def __init__(self, x, y, hue, data, order, hue_order,
estimator, ci, n_boot, units,
orient, color, palette, saturation, errcolor, errwidth=None,
capsize=None):
"""Initialize the plotter."""
self.establish_variables(x, y, hue, data, orient,
order, hue_order, units)
self.establish_colors(color, palette, saturation)
self.estimate_statistic(estimator, ci, n_boot)
self.errcolor = errcolor
self.errwidth = errwidth
self.capsize = capsize
def draw_bars(self, ax, kws):
"""Draw the bars onto `ax`."""
# Get the right matplotlib function depending on the orientation
barfunc = ax.bar if self.orient == "v" else ax.barh
barpos = np.arange(len(self.statistic))
if self.plot_hues is None:
# Draw the bars
barfunc(barpos, self.statistic, self.width,
color=self.colors, align="center", **kws)
# Draw the confidence intervals
errcolors = [self.errcolor] * len(barpos)
self.draw_confints(ax,
barpos,
self.confint,
errcolors,
self.errwidth,
self.capsize)
else:
for j, hue_level in enumerate(self.hue_names):
# Draw the bars
offpos = barpos + self.hue_offsets[j]
barfunc(offpos, self.statistic[:, j], self.nested_width,
color=self.colors[j], align="center",
label=hue_level, **kws)
# Draw the confidence intervals
if self.confint.size:
confint = self.confint[:, j]
errcolors = [self.errcolor] * len(offpos)
self.draw_confints(ax,
offpos,
confint,
errcolors,
self.errwidth,
self.capsize)
def plot(self, ax, bar_kws):
"""Make the plot."""
self.draw_bars(ax, bar_kws)
self.annotate_axes(ax)
if self.orient == "h":
ax.invert_yaxis()
def percentageplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
orient=None, color=None, palette=None, saturation=.75,
ax=None, **kwargs):
# Estimator calculates required statistic (proportion)
estimator = lambda x, y: (float(len(x))/y)*100
ci = None
n_boot = 0
units = None
errcolor = None
if x is None and y is not None:
orient = "h"
x = y
elif y is None and x is not None:
orient = "v"
y = x
elif x is not None and y is not None:
raise TypeError("Cannot pass values for both `x` and `y`")
else:
raise TypeError("Must pass values for either `x` or `y`")
plotter = _BarPlotter(x, y, hue, data, order, hue_order,
estimator, ci, n_boot, units,
orient, color, palette, saturation,
errcolor)
plotter.value_label = "Percentage"
if ax is None:
ax = plt.gca()
plotter.plot(ax, kwargs)
return ax
You can provide estimators for the height of the bar (along y axis) in a seaborn countplot by using the estimator keyword.
ax = sns.barplot(x="x", y="x", data=df, estimator=lambda x: len(x) / len(df) * 100)
The above code snippet is from https://github.com/mwaskom/seaborn/issues/1027
They have a whole discussion about how to provide percentages in a countplot. This answer is based off the same thread linked above.
In the context of your specific problem, you can probably do something like this:
ax = sb.barplot(x='occupation', y='some_numeric_column', data=raw_data, estimator=lambda x: len(x) / len(raw_data) * 100, hue='income')
ax.set(ylabel="Percent")
The above code worked for me (on a different dataset with different attributes). Note that you need to put in some numeric column for y else, it gives an error: "ValueError: Neither the x nor y variable appears to be numeric."
From this answer, and using "probability" worked best.
Taken from sns.histplot documentation on the "stat" parameter:
Aggregate statistic to compute in each bin.
count: show the number of observations in each bin
frequency: show the number of observations divided by the bin width
probability: or proportion: normalize such that bar heights sum to 1
percent: normalize such that bar heights sum to 100
density: normalize such that the total area of the histogram equals 1
import seaborn as sns
df = sns.load_dataset('titanic')
ax = sns.histplot(
x = df['class'],
hue=df['survived'],
multiple="dodge",
stat = 'probability',
shrink = 0.5,
common_norm=False
)

Marker size/alpha scaling with window size/zoom in plot/scatter

When exploring data sets with many points on an xy chart, I can adjust the alpha and/or marker size to give a good quick visual impression of where the points are most densely clustered. However when I zoom in or make the window bigger, the a different alpha and/or marker size is needed to give the same visual impression.
How can I have the alpha value and/or the marker size increase when I make the window bigger or zoom in on the data? I am thinking that if I double the window area I could double the marker size, and/or take the square root of the alpha; and the opposite for zooming.
Note that all points have the same size and alpha. Ideally the solution would work with plot(), but if it can only be done with scatter() that would be helpful also.
You can achieve what you want with matplotlib event handling. You have to catch zoom and resize events separately. It's a bit tricky to account for both at the same time, but not impossible. Below is an example with two subplots, a line plot on the left and a scatter plot on the right. Both zooming (factor) and resizing of the figure (fig_factor) re-scale the points according to the scaling factors in figure size and x- and y- limits. As there are two limits defined -- one for the x and one for the y direction, I used here the respective minima for the two factors. If you'd rather want to scale with the larger factors, change the min to max in both event functions.
from matplotlib import pyplot as plt
import numpy as np
fig, axes = plt.subplots(nrows=1, ncols = 2)
ax1,ax2 = axes
fig_width = fig.get_figwidth()
fig_height = fig.get_figheight()
fig_factor = 1.0
##saving some values
xlim = dict()
ylim = dict()
lines = dict()
line_sizes = dict()
paths = dict()
point_sizes = dict()
## a line plot
x1 = np.linspace(0,np.pi,30)
y1 = np.sin(x1)
lines[ax1] = ax1.plot(x1, y1, 'ro', markersize = 3, alpha = 0.8)
xlim[ax1] = ax1.get_xlim()
ylim[ax1] = ax1.get_ylim()
line_sizes[ax1] = [line.get_markersize() for line in lines[ax1]]
## a scatter plot
x2 = np.random.normal(1,1,30)
y2 = np.random.normal(1,1,30)
paths[ax2] = ax2.scatter(x2,y2, c = 'b', s = 20, alpha = 0.6)
point_sizes[ax2] = paths[ax2].get_sizes()
xlim[ax2] = ax2.get_xlim()
ylim[ax2] = ax2.get_ylim()
def on_resize(event):
global fig_factor
w = fig.get_figwidth()
h = fig.get_figheight()
fig_factor = min(w/fig_width,h/fig_height)
for ax in axes:
lim_change(ax)
def lim_change(ax):
lx = ax.get_xlim()
ly = ax.get_ylim()
factor = min(
(xlim[ax][1]-xlim[ax][0])/(lx[1]-lx[0]),
(ylim[ax][1]-ylim[ax][0])/(ly[1]-ly[0])
)
try:
for line,size in zip(lines[ax],line_sizes[ax]):
line.set_markersize(size*factor*fig_factor)
except KeyError:
pass
try:
paths[ax].set_sizes([s*factor*fig_factor for s in point_sizes[ax]])
except KeyError:
pass
fig.canvas.mpl_connect('resize_event', on_resize)
for ax in axes:
ax.callbacks.connect('xlim_changed', lim_change)
ax.callbacks.connect('ylim_changed', lim_change)
plt.show()
The code has been tested in Pyton 2.7 and 3.6 with matplotlib 2.1.1.
EDIT
Motivated by the comments below and this answer, I created another solution. The main idea here is to only use one type of event, namely draw_event. At first the plots did not update correctly upon zooming. Also ax.draw_artist() followed by a fig.canvas.draw_idle() like in the linked answer did not really solve the problem (however, this might be platform/backend specific). Instead I added an extra call to fig.canvas.draw() whenever the scaling changes (the if statement prevents infinite loops).
In addition, do avoid all the global variables, I wrapped everything into a class called MarkerUpdater. Each Axes instance can be registered separately to the MarkerUpdater instance, so you could also have several subplots in one figure, of which some are updated and some not. I also fixed another bug, where the points in the scatter plot scaled wrongly -- they should scale quadratic, not linear (see here).
Finally, as it was missing from the previous solution, I also added updating for the alpha value of the markers. This is not quite as straight forward as the marker size, because alpha values must not be larger than 1.0. For this reason, in my implementation the alpha value can only be decreased from the original value. Here I implemented it such that the alpha decreases when the figure size is decreased. Note that if no alpha value is provided to the plot command, the artist stores None as alpha value. In this case the automatic alpha tuning is off.
What should be updated in which Axes can be defined with the features keyword -- see below if __name__ == '__main__': for an example how to use MarkerUpdater.
EDIT 2
As pointed out by #ImportanceOfBeingErnest, there was a problem with infinite recursion with my answer when using the TkAgg backend, and apparently problems with the figure not refreshing properly upon zooming (which I couldn't verify, so probably that was implementation dependent). Removing the fig.canvas.draw() and adding ax.draw_artist(ax) within the loop over the Axes instances instead fixed this issue.
EDIT 3
I updated the code to fix an ongoing issue where figure is not updated properly upon a draw_event. The fix was taken from this answer, but modified to also work for several figures.
In terms of an explanation of how the factors are obtained, the MarkerUpdater instance contains a dict that stores for each Axes instance the figure dimensions and the limits of the axes at the time it is added with add_ax. Upon a draw_event, which is for instance triggered when the figure is resized or the user zooms in on the data, the new (current) values for figure size and axes limits are retrieved and a scaling factor is calculated (and stored) such that zooming in and increasing the figure size makes the markers bigger. Because x- and y-dimensions may change at different rates, I use min to pick one of the two calculated factors and always scale against the original size of the figure.
If you want your alpha to scale with a different function, you can easily change the lines that adjust the alpha value. For instance, if you want a power law instead of a linear decrease, you can write path.set_alpha(alpha*facA**n), where n is the power.
from matplotlib import pyplot as plt
import numpy as np
##plt.switch_backend('TkAgg')
class MarkerUpdater:
def __init__(self):
##for storing information about Figures and Axes
self.figs = {}
##for storing timers
self.timer_dict = {}
def add_ax(self, ax, features=[]):
ax_dict = self.figs.setdefault(ax.figure,dict())
ax_dict[ax] = {
'xlim' : ax.get_xlim(),
'ylim' : ax.get_ylim(),
'figw' : ax.figure.get_figwidth(),
'figh' : ax.figure.get_figheight(),
'scale_s' : 1.0,
'scale_a' : 1.0,
'features' : [features] if isinstance(features,str) else features,
}
ax.figure.canvas.mpl_connect('draw_event', self.update_axes)
def update_axes(self, event):
for fig,axes in self.figs.items():
if fig is event.canvas.figure:
for ax, args in axes.items():
##make sure the figure is re-drawn
update = True
fw = fig.get_figwidth()
fh = fig.get_figheight()
fac1 = min(fw/args['figw'], fh/args['figh'])
xl = ax.get_xlim()
yl = ax.get_ylim()
fac2 = min(
abs(args['xlim'][1]-args['xlim'][0])/abs(xl[1]-xl[0]),
abs(args['ylim'][1]-args['ylim'][0])/abs(yl[1]-yl[0])
)
##factor for marker size
facS = (fac1*fac2)/args['scale_s']
##factor for alpha -- limited to values smaller 1.0
facA = min(1.0,fac1*fac2)/args['scale_a']
##updating the artists
if facS != 1.0:
for line in ax.lines:
if 'size' in args['features']:
line.set_markersize(line.get_markersize()*facS)
if 'alpha' in args['features']:
alpha = line.get_alpha()
if alpha is not None:
line.set_alpha(alpha*facA)
for path in ax.collections:
if 'size' in args['features']:
path.set_sizes([s*facS**2 for s in path.get_sizes()])
if 'alpha' in args['features']:
alpha = path.get_alpha()
if alpha is not None:
path.set_alpha(alpha*facA)
args['scale_s'] *= facS
args['scale_a'] *= facA
self._redraw_later(fig)
def _redraw_later(self, fig):
timer = fig.canvas.new_timer(interval=10)
timer.single_shot = True
timer.add_callback(lambda : fig.canvas.draw_idle())
timer.start()
##stopping previous timer
if fig in self.timer_dict:
self.timer_dict[fig].stop()
##storing a reference to prevent garbage collection
self.timer_dict[fig] = timer
if __name__ == '__main__':
my_updater = MarkerUpdater()
##setting up the figure
fig, axes = plt.subplots(nrows = 2, ncols =2)#, figsize=(1,1))
ax1,ax2,ax3,ax4 = axes.flatten()
## a line plot
x1 = np.linspace(0,np.pi,30)
y1 = np.sin(x1)
ax1.plot(x1, y1, 'ro', markersize = 10, alpha = 0.8)
ax3.plot(x1, y1, 'ro', markersize = 10, alpha = 1)
## a scatter plot
x2 = np.random.normal(1,1,30)
y2 = np.random.normal(1,1,30)
ax2.scatter(x2,y2, c = 'b', s = 100, alpha = 0.6)
## scatter and line plot
ax4.scatter(x2,y2, c = 'b', s = 100, alpha = 0.6)
ax4.plot([0,0.5,1],[0,0.5,1],'ro', markersize = 10) ##note: no alpha value!
##setting up the updater
my_updater.add_ax(ax1, ['size']) ##line plot, only marker size
my_updater.add_ax(ax2, ['size']) ##scatter plot, only marker size
my_updater.add_ax(ax3, ['alpha']) ##line plot, only alpha
my_updater.add_ax(ax4, ['size', 'alpha']) ##scatter plot, marker size and alpha
plt.show()

grouped bar chart with broken axis in matplotlib [duplicate]

I'm trying to create a plot using pyplot that has a discontinuous x-axis. The usual way this is drawn is that the axis will have something like this:
(values)----//----(later values)
where the // indicates that you're skipping everything between (values) and (later values).
I haven't been able to find any examples of this, so I'm wondering if it's even possible. I know you can join data over a discontinuity for, eg, financial data, but I'd like to make the jump in the axis more explicit. At the moment I'm just using subplots but I'd really like to have everything end up on the same graph in the end.
Paul's answer is a perfectly fine method of doing this.
However, if you don't want to make a custom transform, you can just use two subplots to create the same effect.
Rather than put together an example from scratch, there's an excellent example of this written by Paul Ivanov in the matplotlib examples (It's only in the current git tip, as it was only committed a few months ago. It's not on the webpage yet.).
This is just a simple modification of this example to have a discontinuous x-axis instead of the y-axis. (Which is why I'm making this post a CW)
Basically, you just do something like this:
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
plt.show()
To add the broken axis lines // effect, we can do this (again, modified from Paul Ivanov's example):
import matplotlib.pylab as plt
import numpy as np
# If you're not familiar with np.r_, don't worry too much about this. It's just
# a series with points from 0 to 1 spaced at 0.1, and 9 to 10 with the same spacing.
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
fig,(ax,ax2) = plt.subplots(1, 2, sharey=True)
# plot the same data on both axes
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
# zoom-in / limit the view to different portions of the data
ax.set_xlim(0,1) # most of the data
ax2.set_xlim(9,10) # outliers only
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
# Make the spacing between the two axes a bit smaller
plt.subplots_adjust(wspace=0.15)
# This looks pretty good, and was fairly painless, but you can get that
# cut-out diagonal lines look with just a bit more work. The important
# thing to know here is that in axes coordinates, which are always
# between 0-1, spine endpoints are at these locations (0,0), (0,1),
# (1,0), and (1,1). Thus, we just need to put the diagonals in the
# appropriate corners of each of our axes, and so long as we use the
# right transform and disable clipping.
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((1-d,1+d),(-d,+d), **kwargs) # top-left diagonal
ax.plot((1-d,1+d),(1-d,1+d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d,d),(-d,+d), **kwargs) # top-right diagonal
ax2.plot((-d,d),(1-d,1+d), **kwargs) # bottom-right diagonal
# What's cool about this is that now if we vary the distance between
# ax and ax2 via f.subplots_adjust(hspace=...) or plt.subplot_tool(),
# the diagonal lines will move accordingly, and stay right at the tips
# of the spines they are 'breaking'
plt.show()
I see many suggestions for this feature but no indication that it's been implemented. Here is a workable solution for the time-being. It applies a step-function transform to the x-axis. It's a lot of code, but it's fairly simple since most of it is boilerplate custom scale stuff. I have not added any graphics to indicate the location of the break, since that is a matter of style. Good luck finishing the job.
from matplotlib import pyplot as plt
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
import numpy as np
def CustomScaleFactory(l, u):
class CustomScale(mscale.ScaleBase):
name = 'custom'
def __init__(self, axis, **kwargs):
mscale.ScaleBase.__init__(self)
self.thresh = None #thresh
def get_transform(self):
return self.CustomTransform(self.thresh)
def set_default_locators_and_formatters(self, axis):
pass
class CustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]-(self.upper-self.lower)
aa[(a>self.lower)&(a<self.upper)] = self.lower
return aa
def inverted(self):
return CustomScale.InvertedCustomTransform(self.thresh)
class InvertedCustomTransform(mtransforms.Transform):
input_dims = 1
output_dims = 1
is_separable = True
lower = l
upper = u
def __init__(self, thresh):
mtransforms.Transform.__init__(self)
self.thresh = thresh
def transform(self, a):
aa = a.copy()
aa[a>self.lower] = a[a>self.lower]+(self.upper-self.lower)
return aa
def inverted(self):
return CustomScale.CustomTransform(self.thresh)
return CustomScale
mscale.register_scale(CustomScaleFactory(1.12, 8.88))
x = np.concatenate((np.linspace(0,1,10), np.linspace(9,10,10)))
xticks = np.concatenate((np.linspace(0,1,6), np.linspace(9,10,6)))
y = np.sin(x)
plt.plot(x, y, '.')
ax = plt.gca()
ax.set_xscale('custom')
ax.set_xticks(xticks)
plt.show()
Check the brokenaxes package:
import matplotlib.pyplot as plt
from brokenaxes import brokenaxes
import numpy as np
fig = plt.figure(figsize=(5,2))
bax = brokenaxes(
xlims=((0, .1), (.4, .7)),
ylims=((-1, .7), (.79, 1)),
hspace=.05
)
x = np.linspace(0, 1, 100)
bax.plot(x, np.sin(10 * x), label='sin')
bax.plot(x, np.cos(10 * x), label='cos')
bax.legend(loc=3)
bax.set_xlabel('time')
bax.set_ylabel('value')
A very simple hack is to
scatter plot rectangles over the axes' spines and
draw the "//" as text at that position.
Worked like a charm for me:
# FAKE BROKEN AXES
# plot a white rectangle on the x-axis-spine to "break" it
xpos = 10 # x position of the "break"
ypos = plt.gca().get_ylim()[0] # y position of the "break"
plt.scatter(xpos, ypos, color='white', marker='s', s=80, clip_on=False, zorder=100)
# draw "//" on the same place as text
plt.text(xpos, ymin-0.125, r'//', fontsize=label_size, zorder=101, horizontalalignment='center', verticalalignment='center')
Example Plot:
For those interested, I've expanded upon #Paul's answer and added it to the matplotlib wrapper proplot. It can do axis "jumps", "speedups", and "slowdowns".
There is no way currently to add "crosses" that indicate the discrete jump like in Joe's answer, but I plan to add this in the future. I also plan to add a default "tick locator" that sets sensible default tick locations depending on the CutoffScale arguments.
Adressing Frederick Nord's question how to enable parallel orientation of the diagonal "breaking" lines when using a gridspec with ratios unequal 1:1, the following changes based on the proposals of Paul Ivanov and Joe Kingtons may be helpful. Width ratio can be varied using variables n and m.
import matplotlib.pylab as plt
import numpy as np
import matplotlib.gridspec as gridspec
x = np.r_[0:1:0.1, 9:10:0.1]
y = np.sin(x)
n = 5; m = 1;
gs = gridspec.GridSpec(1,2, width_ratios = [n,m])
plt.figure(figsize=(10,8))
ax = plt.subplot(gs[0,0])
ax2 = plt.subplot(gs[0,1], sharey = ax)
plt.setp(ax2.get_yticklabels(), visible=False)
plt.subplots_adjust(wspace = 0.1)
ax.plot(x, y, 'bo')
ax2.plot(x, y, 'bo')
ax.set_xlim(0,1)
ax2.set_xlim(10,8)
# hide the spines between ax and ax2
ax.spines['right'].set_visible(False)
ax2.spines['left'].set_visible(False)
ax.yaxis.tick_left()
ax.tick_params(labeltop='off') # don't put tick labels at the top
ax2.yaxis.tick_right()
d = .015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
on = (n+m)/n; om = (n+m)/m;
ax.plot((1-d*on,1+d*on),(-d,d), **kwargs) # bottom-left diagonal
ax.plot((1-d*on,1+d*on),(1-d,1+d), **kwargs) # top-left diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d*om,d*om),(-d,d), **kwargs) # bottom-right diagonal
ax2.plot((-d*om,d*om),(1-d,1+d), **kwargs) # top-right diagonal
plt.show()
This is a hacky but pretty solution for x-axis breaks.
The solution is based on https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html, which gets rid of the problem with positioning the break above the spine, solved by How can I plot points so they appear over top of the spines with matplotlib?
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
def axis_break(axis, xpos=[0.1, 0.125], slant=1.5):
d = slant # proportion of vertical to horizontal extent of the slanted line
anchor = (xpos[0], -1)
w = xpos[1] - xpos[0]
h = 1
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12, zorder=3,
linestyle="none", color='k', mec='k', mew=1, clip_on=False)
axis.add_patch(Rectangle(
anchor, w, h, fill=True, color="white",
transform=axis.transAxes, clip_on=False, zorder=3)
)
axis.plot(xpos, [0, 0], transform=axis.transAxes, **kwargs)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
axis_break(ax, xpos=[0.1, 0.12], slant=1.5)
axis_break(ax, xpos=[0.3, 0.31], slant=-10)
if you want to replace an axis label, this would do the trick:
from matplotlib import ticker
def replace_pos_with_label(fig, pos, label, axis):
fig.canvas.draw() # this is needed to set up the x-ticks
labs = axis.get_xticklabels()
labels = []
locs = []
for text in labs:
x = text._x
lab = text._text
if x == pos:
lab = label
labels.append(lab)
locs.append(x)
axis.xaxis.set_major_locator(ticker.FixedLocator(locs))
axis.set_xticklabels(labels)
fig, ax = plt.subplots(1,1)
plt.plot(np.arange(10))
replace_pos_with_label(fig, 0, "-10", axis=ax)
replace_pos_with_label(fig, 6, "$10^{4}$", axis=ax)
axis_break(ax, xpos=[0.1, 0.12], slant=2)

How to plot animated dots in different colors with matplotlib?

I have a function that generates animated dots, here is the part that causes a problem :
dots = [dot() for i in range(N)]
fig = plt.figure()
ax = plt.axes(xlim=(0, 10), ylim=(0, 10))
d, = ax.plot([dot.x for dot in dots],[dot.y for dot in dots], 'ro', markersize=3)`
so, dot is the name of my class of objects et dots is the list that contains N objects. Every dot is plotted in red.
What I want to do is to plot, for example, N-1 dots in red and one dot in blue, is it possible with the command ax.plot ?
Thanks for your help
Yes, it is possible. You will need to segregate the points into two collections; there are a number of ways to do this; here I chose to extract one point from the list. then you must plot each collections separately on the same canvas.
import random
import matplotlib.pyplot as plt
class Dot(object):
def __init__(self, x, y):
self.x = x
self.y = y
def get_random_dot(dots):
random.shuffle(dots)
return dots.pop()
num_dots = 10
dots = [Dot(random.random(), random.random()) for _ in range(num_dots)]
fig = plt.figure()
ax = plt.axes()
selected_dot = get_random_dot(dots)
d, = ax.plot([dot.x for dot in dots],[dot.y for dot in dots], 'r.')
f, = ax.plot(selected_dot.x, selected_dot.y, color='blue', marker='o', linewidth=3)
plt.show()

How can draw a line in matplotlib so that the edge (not the center) of the drawn line follows the plotted data?

I'm working on a figure to show traffic levels on a highway map. The idea is that for each
highway segment, I would plot two lines - one for direction. The thickness of each
line
would correspond to the traffic volume in that direction. I need to plot the lines
so that the left edge (relative to driving direction) of the drawn line follows
the shape of the highway segment. I would like to specify the shape in data coordinates,
but I would like to specify the thickness of the line in points.
My data is like this:
[[((5,10),(-7,2),(8,9)),(210,320)],
[((8,4),(9,1),(8,1),(11,4)),(2000,1900)],
[((12,14),(17,14)),(550,650)]]
where, for example, ((5,10),(-7,2),(8,9)) is a sequence of x,y values giving the shape of a highway segment, and (210,320) is traffic volumes in the forward and reverse direction, respectively
Looks matter: the result should be pretty.
I figured out a solution using matplotlib.transforms.Transform and shapely.geometry.LineString.parallel_offset.
Note that shapely's parallel_offset method can sometimes return a MultiLineString, which
is not handled by this code. I've changed the second shape so it does not cross over itself to avoid this problem. I think this problem would happen rarely happen in my application.
Another note: the documentation for matplotlib.transforms.Transform seems to imply that the
array returned by the transform method must be the same shape as the array passed
as an argument, but adding additional points to plot in the transform method seems
to work here.
#matplotlib version 1.1.0
#shapely version 1.2.14
#Python 2.7.3
import matplotlib.pyplot as plt
import shapely.geometry
import numpy
import matplotlib.transforms
def get_my_transform(offset_points, fig):
offset_inches = offset_points / 72.0
offset_dots = offset_inches * fig.dpi
class my_transform(matplotlib.transforms.Transform):
input_dims = 2
output_dims = 2
is_separable = False
has_inverse = False
def transform(self, values):
l = shapely.geometry.LineString(values)
l = l.parallel_offset(offset_dots,'right')
return numpy.array(l.xy).T
return my_transform()
def plot_to_right(ax, x,y,linewidth, **args):
t = ax.transData + get_my_transform(linewidth/2.0,ax.figure)
ax.plot(x,y, transform = t,
linewidth = linewidth,
solid_capstyle = 'butt',
**args)
data = [[((5,10),(-7,2),(8,9)),(210,320)],
[((8,4),(9,1),(8,1),(1,4)),(2000,1900)],
[((12,14),(17,16)),(550,650)]]
fig = plt.figure()
ax = fig.add_subplot(111)
for shape, volumes in data:
x,y = zip(*shape)
plot_to_right(ax, x,y, volumes[0]/100., c = 'blue')
plot_to_right(ax, x[-1::-1],y[-1::-1], volumes[1]/100., c = 'green')
ax.plot(x,y, c = 'grey', linewidth = 1)
plt.show()
plt.close()