Tensorflow 2.x Agents(TF-Agents, Reinforcement Learning Module) & PySC2 - tensorflow2.0

There are pysc2(https://github.com/deepmind/pysc2) & Tensorflow(1.x) and OpenAI-Baselines(https://github.com/openai/baselines), like the following
https://github.com/chris-chris/pysc2-examples
https://github.com/llSourcell/A-Guide-to-DeepMinds-StarCraft-AI-Environment
The TF team has recently come up with a RL implementations(alternative to OpenAi-Baselines) called TF-Agents (https://github.com/tensorflow/agents).
Examples :
https://github.com/tensorflow/agents/blob/master/docs/tutorials/1_dqn_tutorial.ipynb
https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_05_apply_rl.ipynb
https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_12_04_atari.ipynb
For TF-Agents, you do
env_name = 'CartPole-v0'
train_py_env = suite_gym.load(env_name)
eval_py_env = suite_gym.load(env_name)
q_net = q_network.QNetwork(
train_env.observation_spec(),
train_env.action_spec(),
fc_layer_params=fc_layer_params)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
agent = dqn_agent.DqnAgent(
train_env.time_step_spec(),
train_env.action_spec(),
q_network=q_net,
optimizer=optimizer,
td_errors_loss_fn=common.element_wise_squared_loss,
train_step_counter=train_step_counter)
agent.initialize()
For pysc2,
from pysc2.env import environment
from pysc2.env import sc2_env
from pysc2.lib import actions
from pysc2.lib import actions as sc2_actions
from pysc2.lib import features
mineral_env = sc2_env.SC2Env(
map_name="CollectMineralShards",
step_mul=step_mul,
agent_interface_format=AGENT_INTERFACE_FORMAT,
visualize=True)
How do I combine TF-Agents and Pysc2 together?
They are both Google products.

I've recently stumbled on a very similar situation where I wanted to use the hanabi-learning-environment developed by DeepMind with TF-Agents. I'm afraid I have to tell that there is no nice solution to this.
What you must do is fork the DeepMind repo and modify the environment wrapper to be compatible with what TF-Agents requires. It's gonna be quite some work to do especially if you are not familiar with how environments are defined in TF-Agents, but this is definetly something that can be done in about a week of work.
If you want to get an idea of what I did you can look at the original rl_env.py code in the Hanabi repo from DeepMind, and what I modified it into in my repo
I have no idea why DeepMind stick to their structure instead of making their code more compatible, but this is how it is.

Related

Running GluonCV object detection model on Android

I need to run a custom GluonCV object detection module on Android.
I already fine-tuned the model (ssd_512_mobilenet1.0_custom) on a custom dataset, I tried running inference with it (loading the .params file produced during the training) and everything works perfectly on my computer. Now, I need to export this to Android.
I was referring to this answer to figure out the procedure, there are 3 suggested options:
You can use ONNX to convert models to other runtimes, for example [...] NNAPI for Android
You can use TVM
You can use SageMaker Neo + DLR runtime [...]
Regarding the first one, I converted my model to ONNX.
However, in order to use it with NNAPI, it is necessary to convert it to daq. In the repository, they provide a precomplied AppImage of onnx2daq to make the conversion, but the script returns an error. I checked the issues section, and they report that "It actually fails for all onnx object detection models".
Then, I gave a try to DLR, since it's suggested to be the easiest way.
As I understand, in order to use my custom model with DLR, I would first need to compile it with TVM (which also covers the second point mentioned in the linked post). In the repo, they provide a Docker image with some conversion scripts for different frameworks.
I modified the 'compile_gluoncv.py' script, and now I have:
#!/usr/bin/env python3
from tvm import relay
import mxnet as mx
from mxnet.gluon.model_zoo.vision import get_model
from tvm_compiler_utils import tvm_compile
shape_dict = {'data': (1, 3, 300, 300)}
dtype='float32'
ctx = [mx.cpu(0)]
classes_custom = ["CML_mug"]
block = get_model('ssd_512_mobilenet1.0_custom', classes=classes_custom, pretrained_base=False, ctx=ctx)
block.load_parameters("ep_035.params", ctx=ctx) ### this is the file produced by training on the custom dataset
for arch in ["arm64-v8a", "armeabi-v7a", "x86_64", "x86"]:
sym, params = relay.frontend.from_mxnet(block, shape=shape_dict, dtype=dtype)
func = sym["main"]
func = relay.Function(func.params, relay.nn.softmax(func.body), None, func.type_params, func.attrs)
tvm_compile(func, params, arch, dlr_model_name)
However, when I run the script it returns the error:
ValueError: Model ssd_512_mobilenet1.0_custom is not supported. Available options are
alexnet
densenet121
densenet161
densenet169
densenet201
inceptionv3
mobilenet0.25
mobilenet0.5
mobilenet0.75
mobilenet1.0
mobilenetv2_0.25
mobilenetv2_0.5
mobilenetv2_0.75
mobilenetv2_1.0
resnet101_v1
resnet101_v2
resnet152_v1
resnet152_v2
resnet18_v1
resnet18_v2
resnet34_v1
resnet34_v2
resnet50_v1
resnet50_v2
squeezenet1.0
squeezenet1.1
vgg11
vgg11_bn
vgg13
vgg13_bn
vgg16
vgg16_bn
vgg19
vgg19_bn
Am I doing something wrong? Is this thing even possible?
As a side note, after this I'd need to deploy on Android a pose detection model (simple_pose_resnet18_v1b) and an activity recognition one (i3d_nl10_resnet101_v1_kinetics400) as well.
You actually can run GluonCV model directly on Android with Deep Java Library (DJL)
What you need to do is:
hyridize your GluonCV model and save as MXNet model
Build MXNet engine for android, MXNET already support Android build
Include MXNet shared library into your android project
Use DJL in your android project, you can follow this DJL Android demo for PyTorch
The error message is self-explanatory - there is no model "ssd_512_mobilenet1.0_custom" supported by mxnet.gluon.model_zoo.vision.get_model. You are confusing GluonCV's get_model with MXNet Gluon's get_model.
Replace
block = get_model('ssd_512_mobilenet1.0_custom',
classes=classes_custom, pretrained_base=False, ctx=ctx)
with
import gluoncv
block = gluoncv.model_zoo.get_model('ssd_512_mobilenet1.0_custom',
classes=classes_custom, pretrained_base=False, ctx=ctx)

A mkl version of mxnet seems not providing ndarray

When to use mxnet-cu101mkl = {version = "==1.5.0",sys_platform = "== 'linux'"}, I get error that I cannot longer import ndarray or nd:
ImportError: cannot import name 'ndarray'
I have no problem with this when using the same code with mxnet-cu101 (no mkl).
Is this just a bug or is this subpackage no longer supported?
I can confirm that mxnet-cu100mkl works fine (version 1.5.0). Very slight CUDA version difference to yours but the package shouldn't change. I think you might be importing a different mxnet here, possibly a folder called mxnet for example. Check the following:
import mxnet as mx
print(mx.__file__)
It should show the path to mxnet within site-packages for you Python environment. e.g.
/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/__init__.py

Accessing already downloaded dataset with tensorflow_datasets API

I am trying to work with the quite recently published tensorflow_dataset API to train a Keras model on the Open Images Dataset. The dataset is about 570 GB in size. I downloaded the data with the following code:
import tensorflow_datasets as tfds
import tensorflow as tf
open_images_dataset = tfds.image.OpenImagesV4()
open_images_dataset.download_and_prepare(download_dir="/notebooks/dataset/")
After the download was complete, the connection to my jupyter notebook somehow interrupted but the extraction seemed to be finished as well, at least all downloaded files had a counterpart in the "extracted" folder. However, I am not able to access the downloaded data now:
tfds.load(name="open_images_v4", data_dir="/notebooks/open_images_dataset/extracted/", download=False)
This only gives the following error:
AssertionError: Dataset open_images_v4: could not find data in /notebooks/open_images_dataset/extracted/. Please make sure to call dataset_builder.download_and_prepare(), or pass download=True to tfds.load() before trying to access the tf.data.Dataset object.
When I call the function download_and_prepare() it only downloads the whole dataset again.
Am I missing something here?
Edit:
After the download the folder under "extracted" has 18 .tar.gz files.
This is with tensorflow-datasets 1.0.1 and tensorflow 2.0.
The folder hierarchy should be like this:
/notebooks/open_images_dataset/extracted/open_images_v4/0.1.0
All the datasets have a version. Then the data could be loaded like this.
ds = tf.load('open_images_v4', data_dir='/notebooks/open_images_dataset/extracted', download=False)
I didn't have open_images_v4 data. I put cifar10 data into a folder named open_images_v4 to check what folder structure tensorflow_datasets was expecting.
The solution to this was to also use the "data_dir" parameter when initializing the dataset:
builder = tfds.image.OpenImagesV4(data_dir="/raid/openimages/dataset")
builder.download_and_prepare(download_dir="/raid/openimages/dataset")
This way the dataset is donwloaded and extracted in the same directory. Before, it was (for me unnoticeably) extracting to the default directory, which is under /home/.../. That's what caused the error, as there wasn't enough space left under my home directory.
After the extraction, the folder structure is exactly as Manoj-Mohan described.
Above solution haven't worked for me.
builder = tfds.builder(name='folder_name', data_dir=data_dir)
builder.download_and_prepare(download_dir="/home/...")
ds = builder.as_dataset()

NameError: global name 'linear' is not defined

I am trying to run an implementation of attention mechanism by Google DeepMind. However it is based on an older version of TensorFlow and I am getting this error
from tensorflow.models.rnn.rnn_cell import RNNCell, linear
concat = linear([inputs, h, self.c], 4 * self._num_units, True)
NameError: global name 'linear' is not defined
I couldn't find the linear model/function in the new tensorflow documentation. Can anyone help me with this? Thanks!
You need to use the tf.nn.rnn_cell._linear function to make the code work. Have a look at this tutorial for a sample usage.

TensorFlow: Opening log data written by SummaryWriter

After following this tutorial on summaries and TensorBoard, I've been able to successfully save and look at data with TensorBoard. Is it possible to open this data with something other than TensorBoard?
By the way, my application is to do off-policy learning. I'm currently saving each state-action-reward tuple using SummaryWriter. I know I could manually store/train on this data, but I thought it'd be nice to use TensorFlow's built in logging features to store/load this data.
As of March 2017, the EventAccumulator tool has been moved from Tensorflow core to the Tensorboard Backend. You can still use it to extract data from Tensorboard log files as follows:
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
event_acc = EventAccumulator('/path/to/summary/folder')
event_acc.Reload()
# Show all tags in the log file
print(event_acc.Tags())
# E. g. get wall clock, number of steps and value for a scalar 'Accuracy'
w_times, step_nums, vals = zip(*event_acc.Scalars('Accuracy'))
Easy, the data can actually be exported to a .csv file within TensorBoard under the Events tab, which can e.g. be loaded in a Pandas dataframe in Python. Make sure you check the Data download links box.
For a more automated approach, check out the TensorBoard readme:
If you'd like to export data to visualize elsewhere (e.g. iPython
Notebook), that's possible too. You can directly depend on the
underlying classes that TensorBoard uses for loading data:
python/summary/event_accumulator.py (for loading data from a single
run) or python/summary/event_multiplexer.py (for loading data from
multiple runs, and keeping it organized). These classes load groups of
event files, discard data that was "orphaned" by TensorFlow crashes,
and organize the data by tag.
As another option, there is a script
(tensorboard/scripts/serialize_tensorboard.py) which will load a
logdir just like TensorBoard does, but write all of the data out to
disk as json instead of starting a server. This script is setup to
make "fake TensorBoard backends" for testing, so it is a bit rough
around the edges.
I think the data are encoded protobufs RecordReader format. To get serialized strings out of files you can use py_record_reader or build a graph with TFRecordReader op, and to deserialize those strings to protobuf use Event schema. If you get a working example, please update this q, since we seem to be missing documentation on this.
I did something along these lines for a previous project. As mentioned by others, the main ingredient is tensorflows event accumulator
from tensorflow.python.summary import event_accumulator as ea
acc = ea.EventAccumulator("folder/containing/summaries/")
acc.Reload()
# Print tags of contained entities, use these names to retrieve entities as below
print(acc.Tags())
# E. g. get all values and steps of a scalar called 'l2_loss'
xy_l2_loss = [(s.step, s.value) for s in acc.Scalars('l2_loss')]
# Retrieve images, e. g. first labeled as 'generator'
img = acc.Images('generator/image/0')
with open('img_{}.png'.format(img.step), 'wb') as f:
f.write(img.encoded_image_string)
You can also use the tf.train.summaryiterator: To extract events in a ./logs-Folder where only classic scalars lr, acc, loss, val_acc and val_loss are present you can use this GIST: tensorboard_to_csv.py
Chris Cundy's answer works well when you have less than 10000 data points in your tfevent file. However, when you have a large file with over 10000 data points, Tensorboard will automatically sampling them and only gives you at most 10000 points. It is a quite annoying underlying behavior as it is not well-documented. See https://github.com/tensorflow/tensorboard/blob/master/tensorboard/backend/event_processing/event_accumulator.py#L186.
To get around it and get all data points, a bit hacky way is to:
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
class FalseDict(object):
def __getitem__(self,key):
return 0
def __contains__(self, key):
return True
event_acc = EventAccumulator('path/to/your/tfevents',size_guidance=FalseDict())
It looks like for tb version >=2.3 you can streamline the process of converting your tb events to a pandas dataframe using tensorboard.data.experimental.ExperimentFromDev().
It requires you to upload your logs to TensorBoard.dev, though, which is public. There are plans to expand the capability to locally stored logs in the future.
https://www.tensorflow.org/tensorboard/dataframe_api
You can also use the EventFileLoader to iterate through a tensorboard file
from tensorboard.backend.event_processing.event_file_loader import EventFileLoader
for event in EventFileLoader('path/to/events.out.tfevents.xxx').Load():
print(event)
Surprisingly, the python package tb_parse has not been mentioned yet.
From documentation:
Installation:
pip install tensorflow # or tensorflow-cpu pip install -U tbparse # requires Python >= 3.7
Note: If you don't want to install TensorFlow, see Installing without TensorFlow.
We suggest using an additional virtual environment for parsing and plotting the tensorboard events. So no worries if your training code uses Python 3.6 or older versions.
Reading one or more event files with tbparse only requires 5 lines of code:
from tbparse import SummaryReader
log_dir = "<PATH_TO_EVENT_FILE_OR_DIRECTORY>"
reader = SummaryReader(log_dir)
df = reader.scalars
print(df)