link MKL libraries in Windows / Clion /Cmake - cmake

I am very new in CMake and I am trying to include MKL libraries in my project done in Clion.
Compiler is MVS 2019 as required.
Using MKL tool I get the following information:
use this link line: mkl_intel_ilp64_dll.lib mkl_tbb_thread_dll.lib mkl_core_dll.lib tbb.lib
compiler options: /DMKL_ILP64 -I"%MKLROOT%"\include
My best knowledge of CMake allowed me to try the following:
set(MKL_DIR "C:/Program Files (x86)/IntelSWTools/compilers_and_libraries_2020.3.279/windows/mkl/lib/intel64_win")
target_link_libraries(project_x PRIVATE "${MKL_DIR}/mkl_intel_lp64")
but of course when I tried to check if it finds the library:
find_library(MKL_LIB mkl_intel_lp64)
if(NOT MKL_LIB)
message(FATAL_ERROR "mkl library not found")
endif()
the results are disappointing (=edit:library could not be found). How can I properly do this in Windows / Clion IDE?

Related

CMake TARGET_RUNTIME_DLLS is empty

I have git cloned, built (with MSVC for both Debug and Release) and then installed wxWidgets:
cmake -B build wxWidgets
cmake --build build --config <CONFIG>
cmake --install build --prefix my_install --config <CONFIG>
with <CONFIG> = Debug and <CONFIG> = Release.
Then I used the following CMake script to link against it, as suggested by the wiki:
cmake_minimum_required(VERSION 3.16)
project(Test)
add_executable(Test WIN32 Main.cpp)
# wxWidgets
SET(wxWidgets_ROOT_DIR ${CMAKE_CURRENT_LIST_DIR}/../thirdparty/my_install)
find_package(wxWidgets COMPONENTS core base REQUIRED)
include(${wxWidgets_USE_FILE})
target_link_libraries(Test PRIVATE ${wxWidgets_LIBRARIES})
# Copy runtime DLLs to the directory of the executable.
add_custom_command(TARGET Test POST_BUILD
COMMAND ${CMAKE_COMMAND} -E echo "Runtime Dlls: $<TARGET_RUNTIME_DLLS:Test>"
)
My goal is to automatically copy the DLLs into the directory of the built executable, so that they can be found at runtime. For that I'm using the TARGET_RUNTIME_DLLS generator expression (follwing the sample code in the docs). In the code above, I only print out the expression at build time for testing purposes. The problem is that it is empty.
The approach worked for me before when installing and linking SDL, but SDL provides package configuration files which create imported targets, defining the DLL location(s) via IMPORTED_LOCATION_RELEASE or IMPORTED_LOCATION_DEBUG. For wxWidgets one is apparently supposed to use the FindwxWidgets.cmake script shipped with CMake, which sadly doesn't define the produced binaries. Maybe that's why TARGET_RUNTIME_DLLS isn't populated.
Does anyone know, either how to get TARGET_RUNTIME_DLLS filled or how to obtain the list of built wxWidgets DLLs for the current configuration (Release/Debug) post build copying?
Thanks a lot in advance!
I am dealing with a similar problem.
First sanity checks:
You have to work on windows platform otherwise this feature does not
work.
Your Cmake is 3.21 or above
Next comes fuzzy part. I think the library that you are trying to include have to be a Shared Imported library and you have to set a set_target_properties for IMPORTED_IMPLIB which is a path to a .lib file of sort (dll import library, I think it is called) So you have to make sure that it is all set in the package library that you trying to link with your executable.
If you have those dll avaiable and you just want to use them and not actually build them then you can write your own cmake script that will do just what I said above. Then you can include that cmake file in your project and then link against your app.
Note: I also work on similar issue right now and what I just said have not been working very reliably. I got some dlls to be copied and some do not.
Edit:
Cmake docs give a more detailed explanation on how this library setting should look like if you use find_package feature.
Found here: https://cmake.org/cmake/help/latest/command/add_library.html#imported-libraries
An UNKNOWN library type is typically only used in the implementation
of Find Modules. It allows the path to an imported library (often
found using the find_library() command) to be used without having to
know what type of library it is. This is especially useful on Windows
where a static library and a DLL's import library both have the same
file extension.

Building a rust library through CMake and using it as imported library target

I'm restucturing the CMake based build of a cross platform (macOS/Windows, Linux should be added soon) C++ project that has a third party rust library as dependendcy. Until now the rust lib dependency was supplied as precompiled library but I want to make its compilation part of my CMake build.
I got it working on macOS using the CMake makefile exporter by referencing the compiled library as a static imported library target and setting up a custom target with the command to build the rust library through cargo like this
add_library (rustlib STATIC IMPORTED)
add_custom_target (rustlib_cargo
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/Ext/rustlib/c-api
COMMAND cargo rustc --release -- --crate-type staticlib)
# Note: RUSTLIB_OUTPUT is set above refering to the absolute path of the produced platform specific library
set_target_properties (rustlib PROPERTIES IMPORTED_LOCATION ${RUSTLIB_OUTPUT})
add_dependencies (rustlib rustlib_cargo)
On macOS the cargo rustc command is invoked before the targets that link against my rustlib target are built and in case the rust library has been built previously this is detected by cargo and it just skips that compilation steph. But on Windows this fails with the built-in ninja exporter of Microsoft Visual Studio 2019 with an error like this:
ninja : error : '../../../Ext/rustlib/target/release/deps/rustlib.lib', needed by 'SomeTargetLinkingAgainstRustlib', missing and no known rule to make it
If I remove the line set_target_properties (rustlib PROPERTIES IMPORTED_LOCATION ${RUSTLIB_OUTPUT}) the build starts correctly, the rust build gets triggered, but as expected I end up with a linker error as the library to link against is not found. So is there any way to refer to a file that is not existent at configuration time but is guranteed to be created during compilation?

Cuda CMake 3.10 CMakeLists.txt

I have a visual c++ project which creates a dll.
For this project I have a working CMakeLists.txt.
Now I created two cuda source files which complete the project and
with visual studio the build works fine.
I want to add the matching commands to my cmake file.
Can anyone tell me the basic commands I need to add?
I try to build a dll library where i use .cu and .cpp files....
The important part of my cmake file looks like:
# ----------------------------------------------------------------------------
# Set Cuda properties
# ----------------------------------------------------------------------------
enable_language(CUDA)
set(CUDA_SEPARABLE_COMPILATION ON)
set(CUDA_PROPAGATE_HOST_FLAGS OFF)
if (CMAKE_SIZEOF_VOID_P MATCHES 8)
set(CUDA_64_BIT_DEVICE_CODE_DEFAULT ON)
endif()
set(CUDA_NVCC_FLAGS "-gencode arch=compute_50,code=sm_50;-rdc=true;-use_fast_math")
message(STATUS "CUDA_PROPAGATE_HOST_FLAGS: ${CUDA_PROPAGATE_HOST_FLAGS}")
message(STATUS "CUDA_HOST_COMPILER: ${CUDA_HOST_COMPILER}")
message(STATUS "CUDA_NVCC_FLAGS: ${CUDA_NVCC_FLAGS}")
# ----------------------------------------------------------------------------
# Create shared library project
# ----------------------------------------------------------------------------
add_library(${LIB_NAME} SHARED ${HEADERS} ${SOURCES} ${CUDA_SOURCES})
set(CUDA_LIBRARIES "cudadevrt.lib;cudart.lib")
target_link_libraries(${LIB_NAME} ${CUDA_LIBRARIES})
But it doesn't compile the cuda files with the right flags.
Also in visual studio the preprocessor definitions are also in the cuda part of the properties....any suggestions?
I'll try to answer this question using the discussion from the comments and add some extra information.
First of all, there are two ways to enable CUDA support in CMake. One is the old FindCUDA module, and the other is the new built-in CUDA language support added in CMake 3.8, and explained here.
You can choose one or the other (but you'll probably want to use the built-in support for new projects), but then you have to stick with your choice.
To use built-in support you either add it to the project(...) statement or use:
enable_language(CUDA);
To use the old FindCUDA package, you would use:
find_package(CUDA);
Note that the two options use completely different variables for setup. To see what variables are supported by FindCUDA see this page, and for built-in CUDA support see this (don't forget that the <LANG> placeholder can be replaced by any language, which means that CUDA is also one of the available substitutions).
E.g. with FindCUDA you would use CUDA_NVCC_FLAGS to set the compiler flags manually, and with built-in language support you would use CMAKE_CUDA_FLAGS for the same purpose. As a rule of thumb: if the variable starts with CUDA_ it is a part of the FindCUDA package, and if it starts with CMAKE_, then it is part of built-in support.

Linking GLEW with CMake

How can you link GLEW to a project with CMake?
We've been trying to link GLEW to our project using CMake for at least 3 hours without any success so any help is accepted.
I'm using the FindGLEW.cmake which comes with CMake 3.1.0
CMakeLists.txt
find_package(GLEW REQUIRED)
if (GLEW_FOUND)
include_directories($(GLEW_INCLUDE_DIRS))
endif()
Environment Variables
I'm using MinGW w64 to compile the sources and we successfully linked GLFW and GLM just by copying the includes and libs to their respective folders, but after doing the same with GLEW, CMake still couldn't find it.
Sorry if I wasn't clear enough while formulating the question. I will provide any additional information required.
Edit: I've managed to link the header files by specifying their location in the CMake Cache file, though I'm getting undefined reference to glew functions like glewInit().
Typical CMake scripts like FindGLEW will define variables that specify the paths and files that your project needs. If the script can't automatically identify the correct paths (usually because of nonstandard install location, which is fine), then it leaves these variables up to you to fill in.
With command line CMake, you use the -D flag to define and set the value of a given variable. Other CMake interfaces, like CMake-gui or an IDE integration, give you this ability some other way.
However you do it, you can also modify the cache directly (CMakeCache.txt) and see what CMake is using in there or just clear the cache altogether. You'll have to rerun CMake for it to pick up your changes.
When it comes to linking, that's when you need to tell CMake which libs to link. Use the link_libraries command with what the automated script gives you.
find_package(GLEW REQUIRED)
include_directories(${GLEW_INCLUDE_DIRS})
link_libraries(${GLEW_LIBRARIES})
Other answers do obviously work, but the target based style of cmake makes it even easier since the GLEW find module defines the imported target GLEW::GLEW. All you need is:
find_package(GLEW REQUIRED)
target_link_libraries(YourTarget GLEW::GLEW)
YourTarget is the target that you created with add_executable or add_library. No need to explicitly add include directories, they are added automatically by linking the targets.
The secret of find_package(GLEW) is in FindGLEW.cmake file with cmake install.
find_path(GLEW_INCLUDE_DIR GL/glew.h)
find_library(GLEW_LIBRARY NAMES GLEW glew32 glew glew32s PATH_SUFFIXES lib64)
The find_path and find_library commands find paths in standard system paths. If you want them to find paths in user defined directories, you should tell them.
For example:
set(CMAKE_PREFIX_PATH "d:/libs/glew-1.10.0")
set(CMAKE_LIBRARY_PATH "d:/libs/glew-1.10.0/lib/Release/Win32/")
find_package(GLEW REQUIRED)
Reference:
http://www.cmake.org/cmake/help/v3.0/command/find_path.html
http://www.cmake.org/cmake/help/v3.0/command/find_library.html
I was struggling hard to link glew to cmake through command line on mac. This might be helpful but I am not sure :) I will walk you through step by step of what I have done.
I installed Cmake source from the web.
Then I went inside the cmake folder in terminal and typed
./bootstrap && make && make install
(this will install cmake command line tools on our OS platform)
I have some exercise files. I want cmake to generate xcode files for me for all those exercise files (ex. triangles.cpp, shader.cpp etc) So i made a directory inside exercise files folder.
$ mkdir xcode
$ cd xcode
$ cmake -G "Xcode" ..
At this point, Cmake suppose to install all xcode files that included correct libraries. But there was an error :
$ cmake -G "Xcode" ..
CMake Warning (dev) at CMakeLists.txt:3 (cmake_minimum_required):
Compatibility with CMake < 2.4 is not supported by CMake >= 3.0.
This warning is for project developers. Use -Wno-dev to suppress it.
system name is: Darwin-14.1.0
system processor is: x86_64
-- Could NOT find GLEW (missing: GLEW_INCLUDE_DIR GLEW_LIBRARY)
-- Could NOT find Doxygen (missing: DOXYGEN_EXECUTABLE)
-- Using Cocoa for window creation
-- Using NSGL for context creation
-- Building GLFW only for the native architecture
CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
GLEW_LIBRARY
linked by target "TextureLoader" in directory /Users/Mydir/Desktop/Exercise/Exercise Files
-- Configuring incomplete, errors occurred!
Then to make sure I have installed GLEW and all its libraries correctly, I ran
$brew install glew
Yes, I have installed glew already but it was NOT linked. See the Warning below:
Warning: glew-1.12.0 already installed, it's just not linked
Then I ran the following commands:
$ brew unlink glew
$ brew link glew
And I have solved the error. So just make sure that you have linked glew. Hope this helps.
Happy Coding :)
Finally I found a simple and short CMakeLists which works if you have installed everything in default paths.(openGL, glfw and glew)
cmake_minimum_required(VERSION 3.3)
project(openGL_tutorial)
find_package(OpenGL REQUIRED)
if(NOT OPENGL_FOUND)
message("ERROR: OpenGL not found")
endif(NOT OPENGL_FOUND)
set(GL_LIBRARY GL GLU X11)
add_executable(openGL_tutorial main.cpp)
target_link_libraries(openGL_tutorial glfw GLEW libGLEW.so libGLU.so libGL.so)
For what it is worth, in 2023, this works for me, on macOS, with GLEW, GLFW, and CMake installed using Homebrew:
cmake_minimum_required(VERSION 3.10)
project(Project)
add_executable(Project main.cpp)
find_package(glfw3 REQUIRED)
find_package(GLEW REQUIRED)
target_link_libraries(Project glfw GLEW::glew)

CMake External Library Linking?

It seems cmake can't determine which libraries can be used with the current compiler or rather I want cmake to only use libraries that have been compiled with the same compiler.
I am using find_library to find the needed libraries but it seems to be unable to determine if the library is actually usable. It managed to find the library by name but it was using the ".lib" extension when I was making a configuration for MinGW. Do I have to create folders for every compiler I compile libraries for and add if statements for each compiler in my script ? That just seems counter intuitive to what I believed find_library would be capable of. Perhaps I am misusing it ? Anyone have any better ideas ?
It seems you're a bit confused: you're right when you suggest that you need different libraries for MinGW and Visual Studio on Windows. But you're wrong when saying that .lib files can't be used by MinGW. Both Visual Studio and MinGW use .lib files to link to libraries on Windows.
The find_library command purpose is only to find libraries. Nothing more, so it's doing its job here.
If you want to make sure that the libraries found can be used by your compiler, you'll have to check that those libraries can be used by your compiler using try_compile:
find_library(YOURLIB_LIBRARY yourlib)
if (YOURLIB_LIBRARY)
try_compile(YOURLIB_WORKS
bindir
somefile.c
LINK_LIBRARIES ${YOURLIB_LIBRARY})
if (YOURLIB_WORKS)
# do something with your library
else()
# warn the user of stop the configuration process
endif()
endif()