I have a pan-tilt-zoom camera (changing focal length over time). There is no idea about its base focal length (e.g. focal length in time point 0). However, It is possible to track the change in focal length between frame and another based on some known constraints and assumptions (Doing a SLAM).
If I assume a random focal length (in pixel unit), for example, 1000 pixel. Then, the new focal lengths are tracked frame by frame. Would I get correct results relatively? Would the results (focal lengths) in each frame be correct up to scale to the ground truth focal length?
For pan and tilt, assuming 0 at start would be valid. Although it is not correct, The estimated values of new tili-pan will be correct up to an offset. However, I suspect the estimated focal length will not be even correct up to scale or offset.. Is it correct or not?
For a quick short answer - if pan-tilt-zoom camera is approximated as a thin lens, then this is the relation between distance (z) and focal length (f):
This is just an approximation. Not fully correct. For more precise calculations, see the camera matrix. Focal length is an intrinsic parameter in the camera matrix. Even if not known, it can be calculated using some camera calibration method such as DLT, Zhang's Method and RANSAC. Once you have the camera matrix, focal length is just a small part of it. You get many more useful things along with it.
OpenCV has an inbuilt implementation of Zhang's method. (Look at this documentation for explanations, but code is old and unusable. New up-to-date code below.) You need to take some pictures of a chess board through your camera. Here is some helper code:
import cv2
from matplotlib import pyplot as plt
import numpy as np
from glob import glob
from scipy import linalg
x,y = np.meshgrid(range(6),range(8))
world_points=np.hstack((x.reshape(48,1),y.reshape(48,1),np.zeros((48,1)))).astype(np.float32)
_3d_points=[]
_2d_points=[]
img_paths=glob('./*.JPG') #get paths of all checkerboard images
for path in img_paths:
im=cv2.imread(path)
ret, corners = cv2.findChessboardCorners(im, (6,8))
if ret: #add points only if checkerboard was correctly detected:
_2d_points.append(corners) #append current 2D points
_3d_points.append(world_points) #3D points are always the same
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(_3d_points, _2d_points, (im.shape[1],im.shape[0]), None, None)
print ("Ret:\n",ret)
print ("Mtx:\n",mtx)
print ("Dist:\n",dist)
You might want Undistortion: Correcting for Radial Distortion
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*8,3), np.float32)
objp[:,:2] = np.mgrid[0:6,0:8].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
for fname in img_paths:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (6,8),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners)
if 'IMG_5456.JPG' in fname:
plt.figure(figsize=(20,10))
img_vis=img.copy()
cv2.drawChessboardCorners(img_vis, (6,8), corners, ret)
plt.imshow(img_vis)
plt.show()
#Calibration
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
# Reprojection Error
tot_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
tot_error += error
print ("Mean Reprojection error: ", tot_error/len(objpoints))
# undistort
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
plt.figure(figsize=(20,10))
#cv2.drawChessboardCorners(dst, (6,8), corners, ret)
plt.imshow(dst)
plt.show()
# Reprojection Error
tot_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
tot_error += error
print ("Mean Reprojection error: ", tot_error/len(objpoints))
Related
I've been creating graphs with the networkx package and everything works fine. I would like to make the graphs even better by placing the bigger nodes in the middle of the graph and the layout functions from networkx does not seem to do the job. The nodes represent the size of degree (the higher connected the node, the bigger).
Is there any way to program these graphs in such a way that the bigger nodes are positioned in the middle? It does not have to be automated, i could also manually choose the nodes and give them the middle position but i can also not find how to do this.
If this is not possible with networkx or something else; is there any way to do it with Gephi or cytoscape? I had trouble with Gephi that it does not import the graph the same way i see it in my jupyter notebook (the colors, the node- and edge-sizes do not import).
To summarize; i want to put bigger nodes in the middle of my graph but i dont mind how i get it done (with networkx, matplotlib or whatever).
Unfortunately i cannot provide my actual graphs but here is an example which can look like one of my graphs; it is a directed weighted graph.
G = nx.gnp_random_graph(15, 0.2, directed=True)
d = dict(G.degree(weight='weight'))
d = {k: v/10 for k, v in d.items()}
edge_size = [(float(i)/sum(weights))*100 for i in weights]
node_size = [(v*1000) for v in d.values()]
nx.draw(G,width=edge_size,node_size=node_size)
There are several options:
import networkx as nx
G = nx.gnp_random_graph(15, 0.2, directed=True)
node_degree = dict(G.degree(weight='weight'))
# A) Precompute node positions, and then manually over-ride some node positions.
node_positions = nx.spring_layout(G)
node_positions[0] = (0.5, 0.5) # by default, networkx plots on a canvas with the origin at (0, 0) and a width and height of 1; (0.5, 0.5) is hence the center
nx.draw(G, pos=node_positions, node_size=[100 * node_degree[node] for node in G])
plt.show()
# B) Use netgraph to draw the graph and then drag the nodes around with the mouse.
from netgraph import InteractiveGraph # pip install netgraph
plot_instance = InteractiveGraph(G, node_size=node_degree)
plt.show()
# C) Modify the Fruchterman-Reingold algorithm to include a gravitational force that pulls nodes with a large "mass" towards the center.
# This is left as an exercise to the interested reader (i.e. very non-trivial).
Edit: option C is non-trivial but also very do-able.
Here is my stab at it.
#!/usr/bin/env python
# coding: utf-8
"""
FR layout but with an additional gravitational pull towards a gravitational center.
The pull is proportional to the mass of the node.
"""
import numpy as np
import matplotlib.pyplot as plt
# pip install netgraph
from netgraph._main import BASE_SCALE
from netgraph._utils import (
_get_unique_nodes,
_edge_list_to_adjacency_matrix,
)
from netgraph._node_layout import (
_is_within_bbox,
_get_temperature_decay,
_get_fr_repulsion,
_get_fr_attraction,
_rescale_to_frame,
_handle_multiple_components,
_reduce_node_overlap,
)
DEBUG = False
#_handle_multiple_components
def get_fruchterman_reingold_newton_layout(edges,
edge_weights = None,
k = None,
g = 1.,
scale = None,
origin = None,
gravitational_center = None,
initial_temperature = 1.,
total_iterations = 50,
node_size = 0,
node_mass = 1,
node_positions = None,
fixed_nodes = None,
*args, **kwargs):
"""Modified Fruchterman-Reingold node layout.
Uses a modified Fruchterman-Reingold algorithm [Fruchterman1991]_ to compute node positions.
This algorithm simulates the graph as a physical system, in which nodes repell each other.
For connected nodes, this repulsion is counteracted by an attractive force exerted by the edges, which are simulated as springs.
Unlike the original algorithm, there is an additional attractive force pulling nodes towards a gravitational center, in proportion to their masses.
Parameters
----------
edges : list
The edges of the graph, with each edge being represented by a (source node ID, target node ID) tuple.
edge_weights : dict
Mapping of edges to edge weights.
k : float or None, default None
Expected mean edge length. If None, initialized to the sqrt(area / total nodes).
g : float or None, default 1.
Gravitational constant that sets the magnitude of the gravitational pull towards the center.
origin : tuple or None, default None
The (float x, float y) coordinates corresponding to the lower left hand corner of the bounding box specifying the extent of the canvas.
If None is given, the origin is placed at (0, 0).
scale : tuple or None, default None
The (float x, float y) dimensions representing the width and height of the bounding box specifying the extent of the canvas.
If None is given, the scale is set to (1, 1).
gravitational_center : tuple or None, default None
The (float x, float y) coordinates towards which nodes experience a gravitational pull.
If None, the gravitational center is placed at the center of the canvas defined by origin and scale.
total_iterations : int, default 50
Number of iterations.
initial_temperature: float, default 1.
Temperature controls the maximum node displacement on each iteration.
Temperature is decreased on each iteration to eventually force the algorithm into a particular solution.
The size of the initial temperature determines how quickly that happens.
Values should be much smaller than the values of `scale`.
node_size : scalar or dict, default 0.
Size (radius) of nodes.
Providing the correct node size minimises the overlap of nodes in the graph,
which can otherwise occur if there are many nodes, or if the nodes differ considerably in size.
node_mass : scalar or dict, default 1.
Mass of nodes.
Nodes with higher mass experience a larger gravitational pull towards the center.
node_positions : dict or None, default None
Mapping of nodes to their (initial) x,y positions. If None are given,
nodes are initially placed randomly within the bounding box defined by `origin` and `scale`.
If the graph has multiple components, explicit initial positions may result in a ValueError,
if the initial positions fall outside of the area allocated to that specific component.
fixed_nodes : list or None, default None
Nodes to keep fixed at their initial positions.
Returns
-------
node_positions : dict
Dictionary mapping each node ID to (float x, float y) tuple, the node position.
References
----------
.. [Fruchterman1991] Fruchterman, TMJ and Reingold, EM (1991) ‘Graph drawing by force‐directed placement’,
Software: Practice and Experience
"""
# This is just a wrapper around `_fruchterman_reingold`, which implements (the loop body of) the algorithm proper.
# This wrapper handles the initialization of variables to their defaults (if not explicitely provided),
# and checks inputs for self-consistency.
assert len(edges) > 0, "The list of edges has to be non-empty."
if origin is None:
if node_positions:
minima = np.min(list(node_positions.values()), axis=0)
origin = np.min(np.stack([minima, np.zeros_like(minima)], axis=0), axis=0)
else:
origin = np.zeros((2))
else:
# ensure that it is an array
origin = np.array(origin)
if scale is None:
if node_positions:
delta = np.array(list(node_positions.values())) - origin[np.newaxis, :]
maxima = np.max(delta, axis=0)
scale = np.max(np.stack([maxima, np.ones_like(maxima)], axis=0), axis=0)
else:
scale = np.ones((2))
else:
# ensure that it is an array
scale = np.array(scale)
assert len(origin) == len(scale), \
"Arguments `origin` (d={}) and `scale` (d={}) need to have the same number of dimensions!".format(len(origin), len(scale))
dimensionality = len(origin)
if gravitational_center is None:
gravitational_center = origin + 0.5 * scale
else:
# ensure that it is an array
gravitational_center = np.array(gravitational_center)
if fixed_nodes is None:
fixed_nodes = []
connected_nodes = _get_unique_nodes(edges)
if node_positions is None: # assign random starting positions to all nodes
node_positions_as_array = np.random.rand(len(connected_nodes), dimensionality) * scale + origin
unique_nodes = connected_nodes
else:
# 1) check input dimensionality
dimensionality_node_positions = np.array(list(node_positions.values())).shape[1]
assert dimensionality_node_positions == dimensionality, \
"The dimensionality of values of `node_positions` (d={}) must match the dimensionality of `origin`/ `scale` (d={})!".format(dimensionality_node_positions, dimensionality)
is_valid = _is_within_bbox(list(node_positions.values()), origin=origin, scale=scale)
if not np.all(is_valid):
error_message = "Some given node positions are not within the data range specified by `origin` and `scale`!"
error_message += "\n\tOrigin : {}, {}".format(*origin)
error_message += "\n\tScale : {}, {}".format(*scale)
error_message += "\nThe following nodes do not fall within this range:"
for ii, (node, position) in enumerate(node_positions.items()):
if not is_valid[ii]:
error_message += "\n\t{} : {}".format(node, position)
error_message += "\nThis error can occur if the graph contains multiple components but some or all node positions are initialised explicitly (i.e. node_positions != None)."
raise ValueError(error_message)
# 2) handle discrepancies in nodes listed in node_positions and nodes extracted from edges
if set(node_positions.keys()) == set(connected_nodes):
# all starting positions are given;
# no superfluous nodes in node_positions;
# nothing left to do
unique_nodes = connected_nodes
else:
# some node positions are provided, but not all
for node in connected_nodes:
if not (node in node_positions):
warnings.warn("Position of node {} not provided. Initializing to random position within frame.".format(node))
node_positions[node] = np.random.rand(2) * scale + origin
unconnected_nodes = []
for node in node_positions:
if not (node in connected_nodes):
unconnected_nodes.append(node)
fixed_nodes.append(node)
# warnings.warn("Node {} appears to be unconnected. The current node position will be kept.".format(node))
unique_nodes = connected_nodes + unconnected_nodes
node_positions_as_array = np.array([node_positions[node] for node in unique_nodes])
total_nodes = len(unique_nodes)
if isinstance(node_size, (int, float)):
node_size = node_size * np.ones((total_nodes))
elif isinstance(node_size, dict):
node_size = np.array([node_size[node] if node in node_size else 0. for node in unique_nodes])
if isinstance(node_mass, (int, float)):
node_mass = node_mass * np.ones((total_nodes))
elif isinstance(node_mass, dict):
node_mass = np.array([node_mass[node] if node in node_mass else 0. for node in unique_nodes])
adjacency = _edge_list_to_adjacency_matrix(
edges, edge_weights=edge_weights, unique_nodes=unique_nodes)
# Forces in FR are symmetric.
# Hence we need to ensure that the adjacency matrix is also symmetric.
adjacency = adjacency + adjacency.transpose()
if fixed_nodes:
is_mobile = np.array([False if node in fixed_nodes else True for node in unique_nodes], dtype=bool)
mobile_positions = node_positions_as_array[is_mobile]
fixed_positions = node_positions_as_array[~is_mobile]
mobile_node_sizes = node_size[is_mobile]
fixed_node_sizes = node_size[~is_mobile]
mobile_node_masses = node_mass[is_mobile]
fixed_node_masses = node_mass[~is_mobile]
# reorder adjacency
total_mobile = np.sum(is_mobile)
reordered = np.zeros((adjacency.shape[0], total_mobile))
reordered[:total_mobile, :total_mobile] = adjacency[is_mobile][:, is_mobile]
reordered[total_mobile:, :total_mobile] = adjacency[~is_mobile][:, is_mobile]
adjacency = reordered
else:
is_mobile = np.ones((total_nodes), dtype=bool)
mobile_positions = node_positions_as_array
fixed_positions = np.zeros((0, 2))
mobile_node_sizes = node_size
fixed_node_sizes = np.array([])
mobile_node_masses = node_mass
fixed_node_masses = np.array([])
if k is None:
area = np.product(scale)
k = np.sqrt(area / float(total_nodes))
temperatures = _get_temperature_decay(initial_temperature, total_iterations)
# --------------------------------------------------------------------------------
# main loop
for ii, temperature in enumerate(temperatures):
candidate_positions = _fruchterman_reingold_newton(mobile_positions, fixed_positions,
mobile_node_sizes, fixed_node_sizes,
adjacency, temperature, k,
mobile_node_masses, fixed_node_masses,
gravitational_center, g)
is_valid = _is_within_bbox(candidate_positions, origin=origin, scale=scale)
mobile_positions[is_valid] = candidate_positions[is_valid]
# --------------------------------------------------------------------------------
# format output
node_positions_as_array[is_mobile] = mobile_positions
if np.all(is_mobile):
node_positions_as_array = _rescale_to_frame(node_positions_as_array, origin, scale)
node_positions = dict(zip(unique_nodes, node_positions_as_array))
return node_positions
def _fruchterman_reingold_newton(mobile_positions, fixed_positions,
mobile_node_radii, fixed_node_radii,
adjacency, temperature, k,
mobile_node_masses, fixed_node_masses,
gravitational_center, g):
"""Inner loop of modified Fruchterman-Reingold layout algorithm."""
combined_positions = np.concatenate([mobile_positions, fixed_positions], axis=0)
combined_node_radii = np.concatenate([mobile_node_radii, fixed_node_radii])
delta = mobile_positions[np.newaxis, :, :] - combined_positions[:, np.newaxis, :]
distance = np.linalg.norm(delta, axis=-1)
# alternatively: (hack adapted from igraph)
if np.sum(distance==0) - np.trace(distance==0) > 0: # i.e. if off-diagonal entries in distance are zero
warnings.warn("Some nodes have the same position; repulsion between the nodes is undefined.")
rand_delta = np.random.rand(*delta.shape) * 1e-9
is_zero = distance <= 0
delta[is_zero] = rand_delta[is_zero]
distance = np.linalg.norm(delta, axis=-1)
# subtract node radii from distances to prevent nodes from overlapping
distance -= mobile_node_radii[np.newaxis, :] + combined_node_radii[:, np.newaxis]
# prevent distances from becoming less than zero due to overlap of nodes
distance[distance <= 0.] = 1e-6 # 1e-13 is numerical accuracy, and we will be taking the square shortly
with np.errstate(divide='ignore', invalid='ignore'):
direction = delta / distance[..., None] # i.e. the unit vector
# calculate forces
repulsion = _get_fr_repulsion(distance, direction, k)
attraction = _get_fr_attraction(distance, direction, adjacency, k)
gravity = _get_gravitational_pull(mobile_positions, mobile_node_masses, gravitational_center, g)
if DEBUG:
r = np.median(np.linalg.norm(repulsion, axis=-1))
a = np.median(np.linalg.norm(attraction, axis=-1))
g = np.median(np.linalg.norm(gravity, axis=-1))
print(r, a, g)
displacement = attraction + repulsion + gravity
# limit maximum displacement using temperature
displacement_length = np.linalg.norm(displacement, axis=-1)
displacement = displacement / displacement_length[:, None] * np.clip(displacement_length, None, temperature)[:, None]
mobile_positions = mobile_positions + displacement
return mobile_positions
def _get_gravitational_pull(mobile_positions, mobile_node_masses, gravitational_center, g):
delta = gravitational_center[np.newaxis, :] - mobile_positions
direction = delta / np.linalg.norm(delta, axis=-1)[:, np.newaxis]
magnitude = mobile_node_masses - np.mean(mobile_node_masses)
return g * magnitude[:, np.newaxis] * direction
if __name__ == '__main__':
import networkx as nx
from netgraph import Graph
G = nx.gnp_random_graph(15, 0.2, directed=True)
node_degree = dict(G.degree(weight='weight'))
node_positions = get_fruchterman_reingold_newton_layout(
list(G.edges()),
node_size={node : BASE_SCALE * degree for node, degree in node_degree.items()},
node_mass=node_degree, g=2
)
Graph(G, node_layout=node_positions, node_size=node_degree)
plt.show()
I have a 16-bit image which I want to rescale to 8-bit while achieving a high contrast. Now I tried histogram equalization as follows:
image_equ = cv.equalizeHist(cv_image.astype(np.uint8))
But the output is super strange:
What is happening? Is the rescaling to 8-bit first maybe the problem?
cv2.equalizeHist does not support uint16 input, and cv_image.astype(np.uint8) results overflows.
The solution is using different library, or implement the equalization using NumPy.
We can find the NumPy implementation of uint8 equalization in the OpenCV documentation:
Histograms - 2: Histogram Equalization
We can adjust the code (using NumPy) for uint16 input and output:
Replace 256 with 65536 (256 = 2^8 and 65536 = 2^16).
Replace 255 with 65535.
Replace uint8 with uint16.
Assuming the original code is correct, the following should work for uint16:
hist, bins = np.histogram(img.flatten(), 65536, [0, 65536]) # Collect 16 bits histogram (65536 = 2^16).
cdf = hist.cumsum()
cdf_m = np.ma.masked_equal(cdf, 0) # Find the minimum histogram value (excluding 0)
cdf_m = (cdf_m - cdf_m.min())*65535/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint16')
# Now we have the look-up table...
img2 = cdf[img]
Complete code sample (building sample 16 bits input):
import cv2
import numpy as np
# Build sample input for testing.
################################################################################
img = cv2.imread('chelsea.png', cv2.IMREAD_GRAYSCALE) # Read sample input image.
cv2.imshow('img', img) # Show input for testing.
img = img.astype(np.uint16) * 16 + 1000 # Make the image 16 bit, but the pixels range is going to be [1000, 5080] not full range (for example).
################################################################################
#equ = cv2.equalizeHist(img) # error: (-215:Assertion failed) _src.type() == CV_8UC1 in function 'cv::equalizeHist'
# https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
hist, bins = np.histogram(img.flatten(), 65536, [0, 65536]) # Collect 16 bits histogram (65536 = 2^16).
cdf = hist.cumsum()
cdf_m = np.ma.masked_equal(cdf, 0) # Find the minimum histogram value (excluding 0)
cdf_m = (cdf_m - cdf_m.min())*65535/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint16')
# Now we have the look-up table...
equ = cdf[img]
# Show result for testing.
cv2.imshow('equ', equ)
cv2.waitKey()
cv2.destroyAllWindows()
Input (before scaling to 16 bits):
Output:
I would like to get the outter part of a robot trajectory (the boundaries of this trajectory).
I read in several posts that the best way to retrieve the boundary of a point cloud is to use alpha shapes.
So I use the alpha shape implementation of CGAL.
Above picture repressent :
Blue dot : The robot trajectory
Red cross : Vertexes of the optimal alpha shape
Cyan edges : Edges of the optimal alphashape.
Optimal alpha is according to the CGAL documentation the alpha for which :
All data points are either on the boundary or in the interior of the regularized version of the alpha shape.
The number of solid component of the alpha shape is equal to or smaller than 1.
If I increase alpha, I got the convex hull (as expected).
But I can't find an alpha that will give me the following boundary (the black one in the figure bellow) :
So my question is :
Does the black shape in figure above can be found thanks to alpha shapes with the blue point as input ?
For those who wants to see how to use the CGAL python binding to generate alpha shapes, here is my code :
def computeAlphaShape(val):
alpha_shape = Alpha_shape_2(points, 10000.0)
it = alpha_shape.find_optimal_alpha(1)
optimal_alpha = it.next()
alpha_shape.set_alpha(val)
print("Optimal alpha : " + str(optimal_alpha) + " current alpha : " + str(val))
if val == 0:
salpha.set_val(optimal_alpha)
return
print("Solid components : " + str(alpha_shape.number_of_solid_components()))
drawResult(alpha_shape)
salpha.on_changed(computeAlphaShape)
def drawResult(alpha_shape):
ax.clear()
ax.plot(X, Y, 'ob')
edges = alpha_shape.alpha_shape_edges()
while edges.hasNext():
eresX = []
eresY = []
edge = edges.next()
segment = alpha_shape.segment(edge)
eresX.append(segment.source().x())
eresY.append(segment.source().y())
eresX.append(segment.target().x())
eresY.append(segment.target().y())
classe = alpha_shape.classify(edge)
color = 'g-'
if classe == EXTERIOR:
color = 'b-'
elif classe == INTERIOR:
color = 'r-'
elif classe == SINGULAR:
color = 'y-'
elif classe == REGULAR:
color = 'c-'
ax.plot(eresX, eresY, color)
vertices = alpha_shape.alpha_shape_vertices()
v_res_x =[]
v_res_y = []
while vertices.hasNext():
vertex = vertices.next()
v_res_x.append(vertex.point().x())
v_res_y.append(vertex.point().y())
ax.plot(v_res_x, v_res_y, '+r')
For such a task I would use the simplification package if the already have the segments and the 2D reconstruction package is you only have points.
Alpha-shape will work well only if the density of the points is uniform, by picking all edges that are not EXTERIOR. Alpha should be the squared distance between 2 points on the trajectory (just a bit more to be sure the edge is picked). I'm not even sure about what will be the outcome if you have some parts with a small local feature size. In such a case, only SINGULAR and REGULAR edges should be picked.
I use the following numpy array that hold an image which is black and white image with the following shape
print(img.shape)
(28, 112)
when I try to grayscale the image, to use it to get contours using opencv with following steps
#grayscale the image
grayed = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#thredshold image
thresh = cv2.threshold(grayed, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
I got the following error
<ipython-input-178-7ebff17d1c18> in get_digits(img)
6
7 #grayscale the image
----> 8 grayed = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
9
10
error: C:\projects\opencv-python\opencv\modules\imgproc\src\color.cpp:11073: error: (-215) depth == 0 || depth == 2 || depth == 5 in function cv::cvtColor
the opencv errors have no information in it to be able to get what is wrong
Here is the working code for how you were trying it:
img = np.stack((img,) * 3,-1)
img = img.astype(np.uint8)
grayed = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(grayed, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
A simpler way of getting the same result is to invert the image yourself:
img = (255-img)
thresh = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)[1]
As you discovered, as you perform different operations on images, the image is required to be in different formats.
cv2.THRESH_BINARY_INV and cv2.THRESH_BINARY are designed to take a color image (and convert it to grayscale) so you need a three channel representation.
cv2.THRESH_OTSU works with grayscale images so one channel is okay for that.
Since your image was already grayscale from the start, you weren't able to convert it from color to grayscale nor did you really need to. I assume you were trying to invert the image but that's easy enough on your own (255-img).
At one point you tried to do an cv2.THRESH_OTSU with floating point values but cv2.THRESH_OTSU requires integers between 0 and 255.
If openCV had more user-friendly error messages it would really help with issues like these.
I have a bit of code (displayed below) that is supposed to display the stimulus for 10 frames. We need pretty exact display times, so using number of frames is a must instead of core.wait(xx) as the display time won't be as precise.
Instead of drawing the stimuli, and leaving it for another 9 frames - the stimuli is re-drawn for every frame.
# Import what is needed
import numpy as np
from psychopy import visual, event, core, logging
from math import sin, cos
import random, math
win = visual.Window(size=(1366, 768), fullscr=True, screen=0, allowGUI=False, allowStencil=False,
monitor='testMonitor', color=[0,0,0], colorSpace='rgb',
blendMode='avg', useFBO=True,
units='deg')
### Definitions of libraries
'''Parameters :
numpy - python package of numerical computations
visual - where all visual stimulus live
event - code to deal with mouse + keyboard input
core - general function for timing & closing the program
logging - provides function for logging error and other messages to one file
random - options for creating arrays of random numbers
sin & cos - for geometry and trigonometry
math - mathematical operations '''
# this is supposed to record all frames
win.setRecordFrameIntervals(True)
win._refreshThreshold=1/65.0+0.004 #i've got 65Hz monitor and want to allow 4ms tolerance
#set the log module to report warnings to the std output window (default is errors only)
logging.console.setLevel(logging.WARNING)
nIntervals=5
# Create space variables and a window
lineSpaceX = 0.55
lineSpaceY = 0.55
patch_orientation = 45 # zero is vertical, going anti-clockwise
surround_orientation = 90
#Jitter values
g_posJitter = 0.05 #gaussian positional jitter
r_posJitter = 0.05 #random positional jitter
g_oriJitter = 5 #gaussian orientation jitter
r_oriJitter = 5 #random orientation jitter
#create a 1-Dimentional array
line = np.array(range(38)) #with values from (0-37) #possibly not needed 01/04/16 DK
#Region where the rectangular patch would appear
#x_rand=random.randint(1,22) #random.randint(Return random integers from low (inclusive) to high (exclusive).
#y_rand=random.randint(1,25)
x_rand=random.randint(6,13) #random.randint(Return random integers from low (inclusive) to high (inclusive).
y_rand=random.randint(6,16)
#rectangular patch dimensions
width=15
height=12
message = visual.TextStim(win,pos=(0.0,-12.0),text='...Press SPACE to continue...')
fixation = visual.TextStim(win, pos=(0.0,0.0), text='X')
# Initialize clock to record response time
rt_clock = core.Clock()
#Nested loop to draw anti-aliased lines on grid
#create a function for this
def myStim():
for x in xrange(1,33): #32x32 grid. When x is 33 will not execute loop - will stop
for y in xrange(1,33): #When y is 33 will not execute loop - will stop
##Define x & y value (Gaussian distribution-positional jitter)
x_pos = (x-32/2-1/2 )*lineSpaceX + random.gauss(0,g_posJitter) #random.gauss(mean,s.d); -1/2 is to center even-numbered stimuli; 32x32 grid
y_pos = (y-32/2-1/2 )*lineSpaceY + random.gauss(0,g_posJitter)
if (x >= x_rand and x < x_rand+width) and (y >= y_rand and y < y_rand+height): # note only "=" on one side
Line_Orientation = random.gauss(patch_orientation,g_oriJitter) #random.gauss(mean,s.d) - Gaussian func.
else:
Line_Orientation = random.gauss(surround_orientation,g_oriJitter) #random.gauss(mean,s.d) - Gaussian func.
#Line_Orientation = random.gauss(Line_Orientation,g_oriJitter) #random.gauss(mean,s.d) - Gaussian func.
#stimOri = random.uniform(xOri - r_oriJitter, xOri + r_oriJitter) #random.uniform(A,B) - Uniform func.
visual.Line(win, units = "deg", start=(0,0), end=(0.0,0.35), pos=(x_pos,y_pos), ori=Line_Orientation, autoLog=False).draw() #Gaussian func.
for frameN in range (10):
myStim()
win.flip()
print x_rand, y_rand
print keys, rt #display response and reaction time on screen output window
I have tried to use the following code to keep it displayed (by not clearing the buffer). But it just draws over it several times.
for frameN in range(10):
myStim()
win.flip(clearBuffer=False)
I realize that the problem could be because I have .draw() in the function that I have defined def myStim():. However, if I don't include the .draw() within the function - I won't be able to display the stimuli.
Thanks in advance for any help.
If I understand correctly, the problem you are facing is that you have to re-draw the stimulus on every flip, but your current drawing function also recreates the entire (random) stimulus, so:
the stimulus changes on each draw between flips, although you need it to stay constant, and
you get a (on some systems quite massive) performance penalty by re-creating the entire stimulus over and over again.
What you want instead is: create the stimulus once, in its entirety, before presentation; and then have this pre-generated stimulus drawn on every flip.
Since your stimulus consists of a fairly large number of visual elements, I would suggest using a class to store the stimulus in one place.
Essentially, you would replace your myStim() function with this class (note that I stripped out most comments, re-aligned the code a bit, and simplified the if statement):
class MyStim(object):
def __init__(self):
self.lines = []
for x in xrange(1, 33):
for y in xrange(1, 33):
x_pos = ((x - 32 / 2 - 1 / 2) * lineSpaceX +
random.gauss(0, g_posJitter))
y_pos = ((y - 32 / 2 - 1 / 2) * lineSpaceY +
random.gauss(0, g_posJitter))
if ((x_rand <= x < x_rand + width) and
(y_rand <= y < y_rand + height)):
Line_Orientation = random.gauss(patch_orientation,
g_oriJitter)
else:
Line_Orientation = random.gauss(surround_orientation,
g_oriJitter)
current_line = visual.Line(
win, units="deg", start=(0, 0), end=(0.0, 0.35),
pos=(x_pos, y_pos), ori=Line_Orientation,
autoLog=False
)
self.lines.append(current_line)
def draw(self):
[line.draw() for line in self.lines]
What this code does on instantiation is in principle identical to your myStim() function: it creates a set of (random) lines. But instead of drawing them onto the screen right away, they are all collected in the list self.lines, and will remain there until we actually need them.
The draw() method traverses through this list, element by element (that is, line by line), and calls every line's draw() method. Note that the stimuli do not have to be re-created every time we want to draw the whole set, but instead we just draw the already pre-created lines!
To get this working in practice, you first need to instantiate the MyStim class:
myStim = MyStim()
Then, whenever you want to present the stimulus, all you have to do is
myStim.draw()
win.flip()
Here is the entire, modified code that should get you started:
import numpy as np
from psychopy import visual, event, core, logging
from math import sin, cos
import random, math
win = visual.Window(size=(1366, 768), fullscr=True, screen=0, allowGUI=False, allowStencil=False,
monitor='testMonitor', color=[0,0,0], colorSpace='rgb',
blendMode='avg', useFBO=True,
units='deg')
# this is supposed to record all frames
win.setRecordFrameIntervals(True)
win._refreshThreshold=1/65.0+0.004 #i've got 65Hz monitor and want to allow 4ms tolerance
#set the log module to report warnings to the std output window (default is errors only)
logging.console.setLevel(logging.WARNING)
nIntervals=5
# Create space variables and a window
lineSpaceX = 0.55
lineSpaceY = 0.55
patch_orientation = 45 # zero is vertical, going anti-clockwise
surround_orientation = 90
#Jitter values
g_posJitter = 0.05 #gaussian positional jitter
r_posJitter = 0.05 #random positional jitter
g_oriJitter = 5 #gaussian orientation jitter
r_oriJitter = 5 #random orientation jitter
x_rand=random.randint(6,13) #random.randint(Return random integers from low (inclusive) to high (inclusive).
y_rand=random.randint(6,16)
#rectangular patch dimensions
width=15
height=12
message = visual.TextStim(win,pos=(0.0,-12.0),text='...Press SPACE to continue...')
fixation = visual.TextStim(win, pos=(0.0,0.0), text='X')
# Initialize clock to record response time
rt_clock = core.Clock()
class MyStim(object):
def __init__(self):
self.lines = []
for x in xrange(1, 33):
for y in xrange(1, 33):
x_pos = ((x - 32 / 2 - 1 / 2) * lineSpaceX +
random.gauss(0, g_posJitter))
y_pos = ((y - 32 / 2 - 1 / 2) * lineSpaceY +
random.gauss(0, g_posJitter))
if ((x_rand <= x < x_rand + width) and
(y_rand <= y < y_rand + height)):
Line_Orientation = random.gauss(patch_orientation,
g_oriJitter)
else:
Line_Orientation = random.gauss(surround_orientation,
g_oriJitter)
current_line = visual.Line(
win, units="deg", start=(0, 0), end=(0.0, 0.35),
pos=(x_pos, y_pos), ori=Line_Orientation,
autoLog=False
)
self.lines.append(current_line)
def draw(self):
[line.draw() for line in self.lines]
myStim = MyStim()
for frameN in range(10):
myStim.draw()
win.flip()
# Clear the screen
win.flip()
print x_rand, y_rand
core.quit()
Please do note that even with this approach, I am dropping frames on a 3-year-old laptop computer with relatively weak integrated graphics chip. But I suspect a modern, fast GPU would be able to handle this amount of visual objects just fine. In the worst case, you could pre-create a large set of stimuli, save them as a bitmap file via win.saveMovieFrames(), and present them as a pre-loaded SimpleImageStim during your actual study.