Which programming language statically check the length of variable-length classes? - language-design

Which statically typed programming language exist where the length of arrays, lists, ... is statically inferred and checked? Consider the following working C# example, where this would be useful:
using System.IO;
using System;
using System.Diagnostics;
using System.Linq;
public class Program
{
public static void Main()
{
string[] arrayOfStrings1 = { "the", "quick", "brown", "fox", "jumps" };
var arrayOfStrings2 = functionOnArray(arrayOfStrings1);
for (int i = 0; i < arrayOfStrings1.Length; i++){
var string1 = arrayOfStrings1[i];
var string2 = arrayOfStrings2[i];
// do anything here
}
}
static string[] functionOnArray(string[] arrayOfStrings){
return arrayOfStrings.Skip(1).ToArray();
}
}
This fails at iteration 5, as the arrayOfStrings2.Length is only 4:
[System.IndexOutOfRangeException: Index was outside the bounds of the array.]
at Program.Main() :line 14
If the language could check beforehand that arrayOfStrings2.Length = arrayOfStrings1.Length - 1, it could know before runtime, that the loop will fail. This would prevent some runtime errors and thus make programming easier.
About the possibility of checking this before runtime:
C# already checks before runtime if a nullable variable has been checked for nullability before it can be cast to the non-nullable version. Simply checking this in an if-condition is sufficient, so it somehow infers before runtime the result of a a function (here the if-condition) on the possible values of a variable. This could be implemented the same way for statically checking the length of variables.

Yes, this is possible, it's called "Dependent types". There are academic languages available that support this, for instance Idris.
I don't believe it's available in any commercial main stream languages.

Related

Cannot assign to an element of an initonly array?

It seems commonly thought that C++/CLI's initonly is the equivalent of C#'s readonly keyword. However, the following:
ref class C {
C();
void Method();
initonly array<int>^ m_array;
};
C::C() {
m_array = gcnew array<int>(10);
}
void C::Method() {
m_array[0] = 5; // Fails with C3893
}
The full error is "'C::m_array': l-value use of initonly data member is only allowed in an instance constructor of class 'C'".
The error message seems strange as I'm not using m_array as the target of an assignment, this is the equivalent of writing
m_array->SetValue(5, 0);
which incidentally compiles fine and does the same thing.
Is this bugged in C++/CLI or by design? By the way, is there any performance penalty to using Array::SetValue vs using the accessor?
A similar (but not identical) case was reported and apparently filed as a bug for VS2008: http://bytes.com/topic/net/answers/847520-initonly-but-not-bug-vc-2008-clr . I'm using Visual Studio 2012.
Yes, that's a bug. It's enforcing something which is not implied by the .NET type system, and the enforcement is ineffective.
But don't use Array::SetValue, which involves boxing and is not type safe. You can just do:
auto array = m_array; // another handle to same array
array[0] = 5;

c++/cli reference to property

Well, I haven't yet found something that says this is impossible, though I'm starting to think it might be. Can you make this work?
using namespace System;
template <typename T>
void unset(Nullable<T>& var) { var = Nullable<T>(); }
void unset(String^% var) { var=nullptr; }
//this is really a C# class in my situation, so I can't change its types
public ref class Foo
{
public:
property Nullable<Decimal> Dec;
property Nullable<int> Num;
property String^ Str;
};
int main()
{
Foo^ foo = gcnew Foo;
foo->Dec = Decimal(1.2);
foo->Num = 3;
foo->Str = "hi";
unset(foo->Dec);
unset(foo->Num);
unset(foo->Str);
Console::WriteLine(foo->Dec);
Console::WriteLine(foo->Num);
Console::WriteLine(foo->Str);
}
Update: unset is called from a code-generating macro which is called on about 50 params. I'd prefer not to have to go make varieties of the macro for each type.
It isn't possible. Setting a property requires calling the property setter function. There is no way to guess for the called method that it needs to call a function vs can assign the passed variable pointer. If you really want to do this then pass a delegate.
There is actually one .NET language that supports it, VB.NET generates code like this:
T temp = obj->prop;
func(temp)
obj->prop = temp;
There is however a dreadful aliasing problem with that, quite undebuggable. This goes belly up in the (rare) case where func() also uses the property. This is otherwise the way you'd work around the limitation, explicitly in your own code.
Beware that your code is wrong, possibly intentional, you are passing a C++ & reference, not a managed % interior pointer. The compiler is going to bitch about that, you can't create references or pointers to managed objects. They move. Unless the reference is to a variable on the stack. It doesn't otherwise change the answer.
For those who may end up here wondering how I got on with this, I ended up being lucky that the class I was working with was an LLBLGen Entity, so I was able to replace
unset(re->var);
with
{ SD::LLBLGen::Pro::ORMSupportClasses::IEntityField2^ f = re->Fields[#var]; \
if (f->IsNullable) \
f->CurrentValue = nullptr; }

What does the C++/CLI Object^% (caret percent-sign) declaration mean?

This apparently is a Google-proof term since I can't get any search engines to not throw away the "extra" characters. I did also look on MSDN in the C++ reference but I can't seem to find the C++/CLI reference because there is nothing in the declarations section on it.
It means "pass by reference":
void bar::foo(Object^% arg) {
arg = gcnew Object; // Callers argument gets updated
}
Same thing in C++:
void foo(Object** arg) {
*arg = new Object;
}
or C#:
void foo(out object arg) {
arg = new Object();
}
C++/CLI doesn't distinguish between ref and out, it does not have the definite assignment checking feature that the C# language has so no need to distinguish between the two. Same in VB.NET, ByRef vs ByVal.
% is a tracking reference.
It is similar to a native reference (Object&), but a tracking reference can reference a CLR object while a native reference cannot. The distinction is necessary because the garbage collector can move CLR objects around, so a CLR-object's memory address may change.
The ^ is a handle. This simply means it is managed. See MSDN and also this SO post.
Essentially, it's the "managed" version of Object*&, and equivalent to ref or out on a reference type in C#.
This is a managed pointer by reference. So if you had something like:
void DoSomething(System::String^% stringObject)
in C# it would look like:
void DoSomething(ref System.String stringObject)
This is a C++/CLI Tracking Reference. This is kind of like a C++ reference, but to a managed object.

Tracking reference in C++/CLI

Can someone please explain me the following code snippet?
value struct ValueStruct {
int x;
};
void SetValueOne(ValueStruct% ref) {
ref.x = 1;
}
void SetValueTwo(ValueStruct ref) {
ref.x = 2;
}
void SetValueThree(ValueStruct^ ref) {
ref->x = 3;
}
ValueStruct^ first = gcnew ValueStruct;
first->x = 0;
SetValueOne(*first);
ValueStruct second;
second.x = 0;
SetValueTwo(second); // am I creating a copy or what? is this copy Disposable even though value types don't have destructors?
ValueStruct^ third = gcnew ValueStruct;
third->x = 0;
SetValueThree(third); // same as the first ?
And my second question is: is there any reason to have something like that?:
ref struct RefStruct {
int x;
};
RefStruct% ref = *gcnew RefStruct;
// rather than:
// RefStruct^ ref = gcnew RefStruct;
// can I retrieve my handle from ref?
// RefStruct^ myref = ???
What is more: I see no difference between value type and ref type, since both can be pointed by handler ;(
Remember that the primary use of C++/CLI is for developing class libraries for consumption by GUIs / web services built in other .NET languages. So C++/CLI has to support both reference and value types because other .NET languages do.
Furthermore, C# can have ref parameters that are value typed as well, this isn't unique to C++/CLI and it doesn't in any way make value types equivalent to reference types.
To answer the questions in your code comments:
am I creating a copy or what?
Yes, SetValueTwo takes its parameter by value, so a copy is made.
is this copy Disposable even though value types don't have destructors?
Incorrect. Value types can have destructors. Value types cannot have finalizers. Since this particular value type has a trivial destructor, the C++/CLI compiler will not cause it to implement IDisposable. In any case, if a parameter is an IDisposable value type, the C++/CLI compiler will ensure that Dispose is called when the variable goes out of scope, just like stack semantics for local variables. This includes abnormal termination (thrown exception), and allows managed types to be used with RAII.
Both
ValueStruct% ref = *gcnew ValueStruct;
and
ValueStruct^ ref = gcnew ValueStruct;
are allowed, and put a boxed value type instance on the managed heap (which isn't a heap at all, but a FIFO queue, however Microsoft chooses to call it a heap like the native memory area for dynamic allocation).
Unlike C#, C++/CLI can keep typed handles to boxed objects.
If a tracking reference is to a value type instance on the stack or embedded in another object, then the value type content has to be boxed in the process of formed the reference.
Tracking references can also be used with reference types, and the syntax to obtain a handle is the same:
RefClass^ newinst = gcnew RefClass();
RefClass% reftoinst = *newinst;
RefClass^% reftohandle = newinst;
RefClass stacksem;
RefClass^ ssh = %stacksem;
One thing that I can never seem to remember completely is that the syntax isn't 100% consistent compared to native C++.
Declare a reference:
int& ri = i; // native
DateTime% dtr = dt; // managed tracking reference
Declare a pointer:
int* pi; // native
Stream^ sh; // tracking handle
Form a pointer:
int* pi = &ri; // address-of native object
DateTime^ dth = %dtr; // address-of managed object
Note that the unary address-of operator is the same as the reference notation in both standard C++ and C++/CLI. This seems to contradict a tracking reference cannot be used as a unary take-address operator (MSDN) which I'll get back to in a second.
First though, the inconsistency:
Form a reference from a pointer:
int& iref = *pi;
DateTime% dtref = *dth;
Note that the unary dereference operator is always *. It is the same as the pointer notation only in the native world, which is completely opposite of address-of which, as mentioned above, are always the same symbol as the reference notation.
Compilable example:
DateTime^ dth = gcnew DateTime();
DateTime% dtr = *dth;
DateTime dt = DateTime::Now;
DateTime^ dtbox = %dt;
FileInfo fi("temp.txt");
// FileInfo^ fih = &fi; causes error C3072
FileInfo^ fih = %fi;
Now, about unary address-of:
First, the MSDN article is wrong when it says:
The following sample shows that a tracking reference cannot be used as a unary take-address operator.
The correct statement is:
% is the address-of operator for creation of a tracking handle. However its use is limited as follows:
A tracking handle must point to an object on the managed heap. Reference types always exist on the managed heap so there is no problem. However, value types and native types may be on the stack (for local variables) or embedded within another object (member variables of value type). Attempts to form a tracking handle will form a handle to a boxed copy of the variable: the handle is not linked to the original variable. As a consequence of the boxing process, which requires metadata which does not exist for native types, it is never possible to have a tracking handle to an instance of a native type.
Example code:
int i = 5;
// int^ ih = %i; causes error C3071
System::Int32 si = 5;
// System::Int32^ sih = %si; causes error C3071
// error C3071: operator '%' can only be applied to an instance
// of a ref class or a value-type
If System::Int32 isn't a value type then I don't know what is. Let's try System::DateTime which is a non-primitive value type:
DateTime dt = DateTime::Now;
DateTime^ dtbox = %dt;
This works!
As a further unfortunate restriction, primitive types which have dual identity (e.g. native int and managed value type System::Int32) are not handled correctly, the % (form tracking reference) operator cannot perform boxing even when the .NET name for the type is given.

Can method parameters be dynamic in C#

In c# 4.0, are dynamic method parameters possible, like in the following code?
public string MakeItQuack(dynamic duck)
{
string quack = duck.Quack();
return quack;
}
I've many cool examples of the dynamic keyword in C# 4.0, but not like above. This question is of course inspired by how python works.
Yes, you can absolutely do that. For the purposes of static overload resolution, it's treated as an object parameter (and called statically). What you do within the method will then be dynamic. For example:
using System;
class Program
{
static void Foo(dynamic duck)
{
duck.Quack(); // Called dynamically
}
static void Foo(Guid ignored)
{
}
static void Main()
{
// Calls Foo(dynamic) statically
Foo("hello");
}
}
The "dynamic is like object" nature means you can't have one overload with just an object parameter and one with just a dynamic parameter.
See documentation http://msdn.microsoft.com/en-us/library/dd264741(VS.100).aspx
Yes, you can do that. As stated in C# 4.0 specification, the grammar is extended to support dynamic wherever a type is expected:
type:
...
dynamic
This includes parameter definitions, of course.
Yes; see e.g.
http://blogs.msdn.com/cburrows/archive/2008/11/14/c-dynamic-part-vi.aspx
or Chris' other blogs. Or grab VS2010 Beta2 and try it out.