When I compile the code (on arduino) I get the following error:
8 bytes lost due to alignment. To avoid this loss, please make sure the tensor_arena is 16 bytes aligned.
constexpr int tensorArenaSize = 8 * 1024;
byte tensorArena[tensorArenaSize];
Someone can help me to fix this problem?
For reasons unbeknownst to me, the compiler wants to make sure your large byte array is 16-byte-aligned. Because of variables already declared above the two lines you included, it needs to "move forward" the Large Array by 8 bytes, to make it start at an address that is on a 16-byte boundary. To fix the error (to me this should just be a warning) either add a dummy 8-byte variable before your Large Array, or move 8-byte worth of variables from before your Large Array to after it. In the first case you just lose 8 bytes of variable space.
Do WAV files allow any arbitrary number of bitsPerSample?
I have failed to get it to work with anything less than 8. I am not sure how to define the blockAlign for one thing.
Dim ss As New Speech.Synthesis.SpeechSynthesizer
Dim info As New Speech.AudioFormat.SpeechAudioFormatInfo(AudioFormat.EncodingFormat.Pcm, 5000, 4, 1, 2500, 1, Nothing) ' FAILS
ss.SetOutputToWaveFile("TEST4bit.wav", info)
ss.Speak("I am 4 bit.")
My.Computer.Audio.Play("TEST4bit.wav")
AFAIK no, 4-bit PCM format is undefined, it wouldn't make much sense to have 16 volume levels of audio; quality would be horrible.
While technically possible, I know no decent software (e.g. Wavelab) that supports it, your very own player could though.
Formula: blockAlign = channels * (bitsPerSample / 8)
So for a mono 4-bit it would be : blockAlign = 1 * ((double)4 / 8) = 0.5
Note the usage of double being necessary to not end up with 0.
But if you look at the block align definition below, it really does not make much sense to have an alignment of 0.5 bytes, one would have to work at the bit-level (painful and useless because at this quality, non-compressed PCM would just sound horrible):
wBlockAlign
The block alignment (in bytes) of the waveform data. Playback
software needs to process a multiple of wBlockAlign bytes of data at
a time, so the value of wBlockAlign can be used for buffer
alignment.
Reference:
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf page 59
Workaround:
If you really need 4-bit, switch to ADPCM format.
I'm studying in high school, and we have an electronics project.
We have an output from our computer which is 4 bit, output address is 37Ah
and my teacher did this:
outportb(0x37A,0x80);
so what will appear in the output? 0h or 8h?
Unless this is a 4-bit CPU from the 70s then your output port will be 8 bits, but the connected hardware might only use 4. In that case it is common (but not necessary) to use the lower 4 bits so you would have 0x0 as value. But that makes using 0x80 a smokescreen, it would be the same as 0x00 and 0xF0. So from that alone I would guess that the upper 4 bits are used here, and the value sent is 0x8.
But a twisted hardware engineer could have used the middle 4 bits.
You need to explain your problem a little better. What microprocesser do you use etc. Is it a 4-port output you have?
But 0x80 is equal to:
0b1000000 and if you use the lower 4 bits: 0b1000xxxx, then they will be zero (not turned on). This will happen if 0x37A is 8bit.
Otherwise, explain your problem better :)
Can't you try and see what happens? or is it only theoretical until now?
EDIT:
I see it is a printer port. Check http://www.tinet.cat/~sag/gifs/ParallelPort.gif if you use port 2,3,4,5 then the upper 4 bits really doesn't matter :) as said in my comment.
I am trying to read the header of an SWF file using NSData.
According to SWF format specification I need to access movie's width and height reading bits, not bytes, and I couldn't find a way to do it in Obj-C
Bytes 9 thru ?: Here is stored a RECT (bounds of movie). It must be read in binary form. First of all, we will transform the first byte to binary: "01100000"
The first 5 bits will tell us the size in bits of each stored value: "01100" = 12
So, we have 4 fields of 12 bits = 48 bits
48 bits + 5 bits (header of RECT) = 53 bits
Fill to complete bytes with zeroes, till we reach a multiple of 8. 53 bits + 3 alignment bits = 56 bits (this RECT is 7 bytes length, 7 * 8 = 56)
I use this formula to determine all this stuff:
Where do I start?
ObjC is a superset of C: You can run C code alongside ObjC with no issues.
Thus, you could use a C-based library like libming to read bytes from your SWF file.
If you need to shuffle bytes into an NSData object, look into the -dataWithBytes:length: method.
Start by looking for code with a compatible license that already does what you want. C libraries can be used from Obj-C code simply by linking them in (or arranging for them to be dynamically linked in) and then calling their functions.
Failing that, start by looking at the Binary Data Programming Guide for Cocoa and NSData Class Reference. You'd want to pull out the bytes that contain the bits you're interested in, then use bit masking techniques to extract the bits you care about. You might find the BitTst(), BitSet(), and BitClr() functions and their friends useful, if they're still there in Snow Leopard; I'm not sure whether they ended up in the démodé parts of Carbon or not. There are also the Posix setbit(), clrbit(), isset(), and isclr() macros defined in . Then, finally, there are the C bitwise operators: ^, |, &, ~, <<, and >>.
I'm not talking about algorithmic stuff (eg use quicksort instead of bubblesort), and I'm not talking about simple things like loop unrolling.
I'm talking about the hardcore stuff. Like Tiny Teensy ELF, The Story of Mel; practically everything in the demoscene, and so on.
I once wrote a brute force RC5 key search that processed two keys at a time, the first key used the integer pipeline, the second key used the SSE pipelines and the two were interleaved at the instruction level. This was then coupled with a supervisor program that ran an instance of the code on each core in the system. In total, the code ran about 25 times faster than a naive C version.
In one (here unnamed) video game engine I worked with, they had rewritten the model-export tool (the thing that turns a Maya mesh into something the game loads) so that instead of just emitting data, it would actually emit the exact stream of microinstructions that would be necessary to render that particular model. It used a genetic algorithm to find the one that would run in the minimum number of cycles. That is to say, the data format for a given model was actually a perfectly-optimized subroutine for rendering just that model. So, drawing a mesh to the screen meant loading it into memory and branching into it.
(This wasn't for a PC, but for a console that had a vector unit separate and parallel to the CPU.)
In the early days of DOS when we used floppy discs for all data transport there were viruses as well. One common way for viruses to infect different computers was to copy a virus bootloader into the bootsector of an inserted floppydisc. When the user inserted the floppydisc into another computer and rebooted without remembering to remove the floppy, the virus was run and infected the harddrive bootsector, thus permanently infecting the host PC. A particulary annoying virus I was infected by was called "Form", to battle this I wrote a custom floppy bootsector that had the following features:
Validate the bootsector of the host harddrive and make sure it was not infected.
Validate the floppy bootsector and
make sure that it was not infected.
Code to remove the virus from the
harddrive if it was infected.
Code to duplicate the antivirus
bootsector to another floppy if a
special key was pressed.
Code to boot the harddrive if all was
well, and no infections was found.
This was done in the program space of a bootsector, about 440 bytes :)
The biggest problem for my mates was the very cryptic messages displayed because I needed all the space for code. It was like "FFVD RM?", which meant "FindForm Virus Detected, Remove?"
I was quite happy with that piece of code. The optimization was program size, not speed. Two quite different optimizations in assembly.
My favorite is the floating point inverse square root via integer operations. This is a cool little hack on how floating point values are stored and can execute faster (even doing a 1/result is faster than the stock-standard square root function) or produce more accurate results than the standard methods.
In c/c++ the code is: (sourced from Wikipedia)
float InvSqrt (float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i>>1); // Now this is what you call a real magic number
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x);
return x;
}
A Very Biological Optimisation
Quick background: Triplets of DNA nucleotides (A, C, G and T) encode amino acids, which are joined into proteins, which are what make up most of most living things.
Ordinarily, each different protein requires a separate sequence of DNA triplets (its "gene") to encode its amino acids -- so e.g. 3 proteins of lengths 30, 40, and 50 would require 90 + 120 + 150 = 360 nucleotides in total. However, in viruses, space is at a premium -- so some viruses overlap the DNA sequences for different genes, using the fact that there are 6 possible "reading frames" to use for DNA-to-protein translation (namely starting from a position that is divisible by 3; from a position that divides 3 with remainder 1; or from a position that divides 3 with remainder 2; and the same again, but reading the sequence in reverse.)
For comparison: Try writing an x86 assembly language program where the 300-byte function doFoo() begins at offset 0x1000... and another 200-byte function doBar() starts at offset 0x1001! (I propose a name for this competition: Are you smarter than Hepatitis B?)
That's hardcore space optimisation!
UPDATE: Links to further info:
Reading Frames on Wikipedia suggests Hepatitis B and "Barley Yellow Dwarf" virus (a plant virus) both overlap reading frames.
Hepatitis B genome info on Wikipedia. Seems that different reading-frame subunits produce different variations of a surface protein.
Or you could google for "overlapping reading frames"
Seems this can even happen in mammals! Extensively overlapping reading frames in a second mammalian gene is a 2001 scientific paper by Marilyn Kozak that talks about a "second" gene in rat with "extensive overlapping reading frames". (This is quite surprising as mammals have a genome structure that provides ample room for separate genes for separate proteins.) Haven't read beyond the abstract myself.
I wrote a tile-based game engine for the Apple IIgs in 65816 assembly language a few years ago. This was a fairly slow machine and programming "on the metal" is a virtual requirement for coaxing out acceptable performance.
In order to quickly update the graphics screen one has to map the stack to the screen in order to use some special instructions that allow one to update 4 screen pixels in only 5 machine cycles. This is nothing particularly fantastic and is described in detail in IIgs Tech Note #70. The hard-core bit was how I had to organize the code to make it flexible enough to be a general-purpose library while still maintaining maximum speed.
I decomposed the graphics screen into scan lines and created a 246 byte code buffer to insert the specialized 65816 opcodes. The 246 bytes are needed because each scan line of the graphics screen is 80 words wide and 1 additional word is required on each end for smooth scrolling. The Push Effective Address (PEA) instruction takes up 3 bytes, so 3 * (80 + 1 + 1) = 246 bytes.
The graphics screen is rendered by jumping to an address within the 246 byte code buffer that corresponds to the right edge of the screen and patching in a BRanch Always (BRA) instruction into the code at the word immediately following the left-most word. The BRA instruction takes a signed 8-bit offset as its argument, so it just barely has the range to jump out of the code buffer.
Even this isn't too terribly difficult, but the real hard-core optimization comes in here. My graphics engine actually supported two independent background layers and animated tiles by using different 3-byte code sequences depending on the mode:
Background 1 uses a Push Effective Address (PEA) instruction
Background 2 uses a Load Indirect Indexed (LDA ($00),y) instruction followed by a push (PHA)
Animated tiles use a Load Direct Page Indexed (LDA $00,x) instruction followed by a push (PHA)
The critical restriction is that both of the 65816 registers (X and Y) are used to reference data and cannot be modified. Further the direct page register (D) is set based on the origin of the second background and cannot be changed; the data bank register is set to the data bank that holds pixel data for the second background and cannot be changed; the stack pointer (S) is mapped to graphics screen, so there is no possibility of jumping to a subroutine and returning.
Given these restrictions, I had the need to quickly handle cases where a word that is about to be pushed onto the stack is mixed, i.e. half comes from Background 1 and half from Background 2. My solution was to trade memory for speed. Because all of the normal registers were in use, I only had the Program Counter (PC) register to work with. My solution was the following:
Define a code fragment to do the blend in the same 64K program bank as the code buffer
Create a copy of this code for each of the 82 words
There is a 1-1 correspondence, so the return from the code fragment can be a hard-coded address
Done! We have a hard-coded subroutine that does not affect the CPU registers.
Here is the actual code fragments
code_buff: PEA $0000 ; rightmost word (16-bits = 4 pixels)
PEA $0000 ; background 1
PEA $0000 ; background 1
PEA $0000 ; background 1
LDA (72),y ; background 2
PHA
LDA (70),y ; background 2
PHA
JMP word_68 ; mix the data
word_68_rtn: PEA $0000 ; more background 1
...
PEA $0000
BRA *+40 ; patched exit code
...
word_68: LDA (68),y ; load data for background 2
AND #$00FF ; mask
ORA #$AB00 ; blend with data from background 1
PHA
JMP word_68_rtn ; jump back
word_66: LDA (66),y
...
The end result was a near-optimal blitter that has minimal overhead and cranks out more than 15 frames per second at 320x200 on a 2.5 MHz CPU with a 1 MB/s memory bus.
Michael Abrash's "Zen of Assembly Language" had some nifty stuff, though I admit I don't recall specifics off the top of my head.
Actually it seems like everything Abrash wrote had some nifty optimization stuff in it.
The Stalin Scheme compiler is pretty crazy in that aspect.
I once saw a switch statement with a lot of empty cases, a comment at the head of the switch said something along the lines of:
Added case statements that are never hit because the compiler only turns the switch into a jump-table if there are more than N cases
I forget what N was. This was in the source code for Windows that was leaked in 2004.
I've gone to the Intel (or AMD) architecture references to see what instructions there are. movsx - move with sign extension is awesome for moving little signed values into big spaces, for example, in one instruction.
Likewise, if you know you only use 16-bit values, but you can access all of EAX, EBX, ECX, EDX , etc- then you have 8 very fast locations for values - just rotate the registers by 16 bits to access the other values.
The EFF DES cracker, which used custom-built hardware to generate candidate keys (the hardware they made could prove a key isn't the solution, but could not prove a key was the solution) which were then tested with a more conventional code.
The FSG 2.0 packer made by a Polish team, specifically made for packing executables made with assembly. If packing assembly isn't impressive enough (what's supposed to be almost as low as possible) the loader it comes with is 158 bytes and fully functional. If you try packing any assembly made .exe with something like UPX, it will throw a NotCompressableException at you ;)