Ordering Columns in custom orders after unstacking [duplicate] - pandas
I have the following DataFrame (df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
I add more column(s) by assignment:
df['mean'] = df.mean(1)
How can I move the column mean to the front, i.e. set it as first column leaving the order of the other columns untouched?
One easy way would be to reassign the dataframe with a list of the columns, rearranged as needed.
This is what you have now:
In [6]: df
Out[6]:
0 1 2 3 4 mean
0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543
1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208
2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596
3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653
4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371
5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165
6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529
7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149
8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195
9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593
In [7]: cols = df.columns.tolist()
In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']
Rearrange cols in any way you want. This is how I moved the last element to the first position:
In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]
Then reorder the dataframe like this:
In [16]: df = df[cols] # OR df = df.ix[:, cols]
In [17]: df
Out[17]:
mean 0 1 2 3 4
0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616
1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551
2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694
3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019
4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485
5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447
6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473
7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914
8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561
9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
You could also do something like this:
df = df[['mean', '0', '1', '2', '3']]
You can get the list of columns with:
cols = list(df.columns.values)
The output will produce:
['0', '1', '2', '3', 'mean']
...which is then easy to rearrange manually before dropping it into the first function
Just assign the column names in the order you want them:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
Now, 'mean' column comes out in the front:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
For pandas >= 1.3 (Edited in 2022):
df.insert(0, 'mean', df.pop('mean'))
How about (for Pandas < 1.3, the original answer)
df.insert(0, 'mean', df['mean'])
https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
In your case,
df = df.reindex(columns=['mean',0,1,2,3,4])
will do exactly what you want.
In my case (general form):
df = df.reindex(columns=sorted(df.columns))
df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))
import numpy as np
import pandas as pd
df = pd.DataFrame()
column_names = ['x','y','z','mean']
for col in column_names:
df[col] = np.random.randint(0,100, size=10000)
You can try out the following solutions :
Solution 1:
df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ]
Solution 2:
df = df[['mean', 'x', 'y', 'z']]
Solution 3:
col = df.pop("mean")
df = df.insert(0, col.name, col)
Solution 4:
df.set_index(df.columns[-1], inplace=True)
df.reset_index(inplace=True)
Solution 5:
cols = list(df)
cols = [cols[-1]] + cols[:-1]
df = df[cols]
solution 6:
order = [1,2,3,0] # setting column's order
df = df[[df.columns[i] for i in order]]
Time Comparison:
Solution 1:
CPU times: user 1.05 ms, sys: 35 µs, total: 1.08 ms Wall time: 995 µs
Solution 2:
CPU times: user 933 µs, sys: 0 ns, total: 933 µs
Wall time: 800 µs
Solution 3:
CPU times: user 0 ns, sys: 1.35 ms, total: 1.35 ms
Wall time: 1.08 ms
Solution 4:
CPU times: user 1.23 ms, sys: 45 µs, total: 1.27 ms
Wall time: 986 µs
Solution 5:
CPU times: user 1.09 ms, sys: 19 µs, total: 1.11 ms
Wall time: 949 µs
Solution 6:
CPU times: user 955 µs, sys: 34 µs, total: 989 µs
Wall time: 859 µs
You need to create a new list of your columns in the desired order, then use df = df[cols] to rearrange the columns in this new order.
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
You can also use a more general approach. In this example, the last column (indicated by -1) is inserted as the first column.
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
You can also use this approach for reordering columns in a desired order if they are present in the DataFrame.
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]
Suppose you have df with columns A B C.
The most simple way is:
df = df.reindex(['B','C','A'], axis=1)
If your column names are too-long-to-type then you could specify the new order through a list of integers with the positions:
Data:
0 1 2 3 4 mean
0 0.397312 0.361846 0.719802 0.575223 0.449205 0.500678
1 0.287256 0.522337 0.992154 0.584221 0.042739 0.485741
2 0.884812 0.464172 0.149296 0.167698 0.793634 0.491923
3 0.656891 0.500179 0.046006 0.862769 0.651065 0.543382
4 0.673702 0.223489 0.438760 0.468954 0.308509 0.422683
5 0.764020 0.093050 0.100932 0.572475 0.416471 0.389390
6 0.259181 0.248186 0.626101 0.556980 0.559413 0.449972
7 0.400591 0.075461 0.096072 0.308755 0.157078 0.207592
8 0.639745 0.368987 0.340573 0.997547 0.011892 0.471749
9 0.050582 0.714160 0.168839 0.899230 0.359690 0.438500
Generic example:
new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])
3 2 1 4 mean 0
0 0.575223 0.719802 0.361846 0.449205 0.500678 0.397312
1 0.584221 0.992154 0.522337 0.042739 0.485741 0.287256
2 0.167698 0.149296 0.464172 0.793634 0.491923 0.884812
3 0.862769 0.046006 0.500179 0.651065 0.543382 0.656891
4 0.468954 0.438760 0.223489 0.308509 0.422683 0.673702
5 0.572475 0.100932 0.093050 0.416471 0.389390 0.764020
6 0.556980 0.626101 0.248186 0.559413 0.449972 0.259181
7 0.308755 0.096072 0.075461 0.157078 0.207592 0.400591
8 0.997547 0.340573 0.368987 0.011892 0.471749 0.639745
9 0.899230 0.168839 0.714160 0.359690 0.438500 0.050582
Although it might seem like I'm just explicitly typing the column names in a different order, the fact that there's a column 'mean' should make it clear that new_order relates to actual positions and not column names.
For the specific case of OP's question:
new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)
mean 0 1 2 3 4
0 0.500678 0.397312 0.361846 0.719802 0.575223 0.449205
1 0.485741 0.287256 0.522337 0.992154 0.584221 0.042739
2 0.491923 0.884812 0.464172 0.149296 0.167698 0.793634
3 0.543382 0.656891 0.500179 0.046006 0.862769 0.651065
4 0.422683 0.673702 0.223489 0.438760 0.468954 0.308509
5 0.389390 0.764020 0.093050 0.100932 0.572475 0.416471
6 0.449972 0.259181 0.248186 0.626101 0.556980 0.559413
7 0.207592 0.400591 0.075461 0.096072 0.308755 0.157078
8 0.471749 0.639745 0.368987 0.340573 0.997547 0.011892
9 0.438500 0.050582 0.714160 0.168839 0.899230 0.359690
The main problem with this approach is that calling the same code multiple times will create different results each time, so one needs to be careful :)
This question has been answered before but reindex_axis is deprecated now so I would suggest to use:
df = df.reindex(sorted(df.columns), axis=1)
For those who want to specify the order they want instead of just sorting them, here's the solution spelled out:
df = df.reindex(['the','order','you','want'], axis=1)
Now, how you want to sort the list of column names is really not a pandas question, that's a Python list manipulation question. There are many ways of doing that, and I think this answer has a very neat way of doing it.
You can reorder the dataframe columns using a list of names with:
df = df.filter(list_of_col_names)
I think this is a slightly neater solution:
df.insert(0, 'mean', df.pop("mean"))
This solution is somewhat similar to #JoeHeffer 's solution but this is one liner.
Here we remove the column "mean" from the dataframe and attach it to index 0 with the same column name.
I ran into a similar question myself, and just wanted to add what I settled on. I liked the reindex_axis() method for changing column order. This worked:
df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1)
An alternate method based on the comment from #Jorge:
df = df.reindex(columns=['mean'] + list(df.columns[:-1]))
Although reindex_axis seems to be slightly faster in micro benchmarks than reindex, I think I prefer the latter for its directness.
This function avoids you having to list out every variable in your dataset just to order a few of them.
def order(frame,var):
if type(var) is str:
var = [var] #let the command take a string or list
varlist =[w for w in frame.columns if w not in var]
frame = frame[var+varlist]
return frame
It takes two arguments, the first is the dataset, the second are the columns in the data set that you want to bring to the front.
So in my case I have a data set called Frame with variables A1, A2, B1, B2, Total and Date. If I want to bring Total to the front then all I have to do is:
frame = order(frame,['Total'])
If I want to bring Total and Date to the front then I do:
frame = order(frame,['Total','Date'])
EDIT:
Another useful way to use this is, if you have an unfamiliar table and you're looking with variables with a particular term in them, like VAR1, VAR2,... you may execute something like:
frame = order(frame,[v for v in frame.columns if "VAR" in v])
Simply do,
df = df[['mean'] + df.columns[:-1].tolist()]
Here's a way to move one existing column that will modify the existing dataframe in place.
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place
Just type the column name you want to change, and set the index for the new location.
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
For your case, this would be like:
df = change_column_order(df, 'mean', 0)
You could do the following (borrowing parts from Aman's answer):
cols = df.columns.tolist()
cols.insert(0, cols.pop(-1))
cols
>>>['mean', 0L, 1L, 2L, 3L, 4L]
df = df[cols]
Moving any column to any position:
import pandas as pd
df = pd.DataFrame({"A": [1,2,3],
"B": [2,4,8],
"C": [5,5,5]})
cols = df.columns.tolist()
column_to_move = "C"
new_position = 1
cols.insert(new_position, cols.pop(cols.index(column_to_move)))
df = df[cols]
I wanted to bring two columns in front from a dataframe where I do not know exactly the names of all columns, because they are generated from a pivot statement before.
So, if you are in the same situation: To bring columns in front that you know the name of and then let them follow by "all the other columns", I came up with the following general solution:
df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
Here is a very simple answer to this(only one line).
You can do that after you added the 'n' column into your df as follows.
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
df['mean'] = df.mean(1)
df
0 1 2 3 4 mean
0 0.929616 0.316376 0.183919 0.204560 0.567725 0.440439
1 0.595545 0.964515 0.653177 0.748907 0.653570 0.723143
2 0.747715 0.961307 0.008388 0.106444 0.298704 0.424512
3 0.656411 0.809813 0.872176 0.964648 0.723685 0.805347
4 0.642475 0.717454 0.467599 0.325585 0.439645 0.518551
5 0.729689 0.994015 0.676874 0.790823 0.170914 0.672463
6 0.026849 0.800370 0.903723 0.024676 0.491747 0.449473
7 0.526255 0.596366 0.051958 0.895090 0.728266 0.559587
8 0.818350 0.500223 0.810189 0.095969 0.218950 0.488736
9 0.258719 0.468106 0.459373 0.709510 0.178053 0.414752
### here you can add below line and it should work
# Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error.
df = df[list(('mean',0, 1, 2,3,4))]
df
mean 0 1 2 3 4
0 0.440439 0.929616 0.316376 0.183919 0.204560 0.567725
1 0.723143 0.595545 0.964515 0.653177 0.748907 0.653570
2 0.424512 0.747715 0.961307 0.008388 0.106444 0.298704
3 0.805347 0.656411 0.809813 0.872176 0.964648 0.723685
4 0.518551 0.642475 0.717454 0.467599 0.325585 0.439645
5 0.672463 0.729689 0.994015 0.676874 0.790823 0.170914
6 0.449473 0.026849 0.800370 0.903723 0.024676 0.491747
7 0.559587 0.526255 0.596366 0.051958 0.895090 0.728266
8 0.488736 0.818350 0.500223 0.810189 0.095969 0.218950
9 0.414752 0.258719 0.468106 0.459373 0.709510 0.178053
You can use a set which is an unordered collection of unique elements to do keep the "order of the other columns untouched":
other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4]
Then, you can use a lambda to move a specific column to the front by:
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: df = pd.DataFrame(np.random.rand(10, 5))
In [4]: df["mean"] = df.mean(1)
In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))]
In [6]: move_col_to_front(df, "mean")
Out[6]:
mean 0 1 2 3 4
0 0.697253 0.600377 0.464852 0.938360 0.945293 0.537384
1 0.609213 0.703387 0.096176 0.971407 0.955666 0.319429
2 0.561261 0.791842 0.302573 0.662365 0.728368 0.321158
3 0.518720 0.710443 0.504060 0.663423 0.208756 0.506916
4 0.616316 0.665932 0.794385 0.163000 0.664265 0.793995
5 0.519757 0.585462 0.653995 0.338893 0.714782 0.305654
6 0.532584 0.434472 0.283501 0.633156 0.317520 0.994271
7 0.640571 0.732680 0.187151 0.937983 0.921097 0.423945
8 0.562447 0.790987 0.200080 0.317812 0.641340 0.862018
9 0.563092 0.811533 0.662709 0.396048 0.596528 0.348642
In [7]: move_col_to_front(df, 2)
Out[7]:
2 0 1 3 4 mean
0 0.938360 0.600377 0.464852 0.945293 0.537384 0.697253
1 0.971407 0.703387 0.096176 0.955666 0.319429 0.609213
2 0.662365 0.791842 0.302573 0.728368 0.321158 0.561261
3 0.663423 0.710443 0.504060 0.208756 0.506916 0.518720
4 0.163000 0.665932 0.794385 0.664265 0.793995 0.616316
5 0.338893 0.585462 0.653995 0.714782 0.305654 0.519757
6 0.633156 0.434472 0.283501 0.317520 0.994271 0.532584
7 0.937983 0.732680 0.187151 0.921097 0.423945 0.640571
8 0.317812 0.790987 0.200080 0.641340 0.862018 0.562447
9 0.396048 0.811533 0.662709 0.596528 0.348642 0.563092
Just flipping helps often.
df[df.columns[::-1]]
Or just shuffle for a look.
import random
cols = list(df.columns)
random.shuffle(cols)
df[cols]
You can use reindex which can be used for both axis:
df
# 0 1 2 3 4 mean
# 0 0.943825 0.202490 0.071908 0.452985 0.678397 0.469921
# 1 0.745569 0.103029 0.268984 0.663710 0.037813 0.363821
# 2 0.693016 0.621525 0.031589 0.956703 0.118434 0.484254
# 3 0.284922 0.527293 0.791596 0.243768 0.629102 0.495336
# 4 0.354870 0.113014 0.326395 0.656415 0.172445 0.324628
# 5 0.815584 0.532382 0.195437 0.829670 0.019001 0.478415
# 6 0.944587 0.068690 0.811771 0.006846 0.698785 0.506136
# 7 0.595077 0.437571 0.023520 0.772187 0.862554 0.538182
# 8 0.700771 0.413958 0.097996 0.355228 0.656919 0.444974
# 9 0.263138 0.906283 0.121386 0.624336 0.859904 0.555009
df.reindex(['mean', *range(5)], axis=1)
# mean 0 1 2 3 4
# 0 0.469921 0.943825 0.202490 0.071908 0.452985 0.678397
# 1 0.363821 0.745569 0.103029 0.268984 0.663710 0.037813
# 2 0.484254 0.693016 0.621525 0.031589 0.956703 0.118434
# 3 0.495336 0.284922 0.527293 0.791596 0.243768 0.629102
# 4 0.324628 0.354870 0.113014 0.326395 0.656415 0.172445
# 5 0.478415 0.815584 0.532382 0.195437 0.829670 0.019001
# 6 0.506136 0.944587 0.068690 0.811771 0.006846 0.698785
# 7 0.538182 0.595077 0.437571 0.023520 0.772187 0.862554
# 8 0.444974 0.700771 0.413958 0.097996 0.355228 0.656919
# 9 0.555009 0.263138 0.906283 0.121386 0.624336 0.859904
Hackiest method in the book
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
A pretty straightforward solution that worked for me is to use .reindex on df.columns:
df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]
Here is a function to do this for any number of columns.
def mean_first(df):
ncols = df.shape[1] # Get the number of columns
index = list(range(ncols)) # Create an index to reorder the columns
index.insert(0,ncols) # This puts the last column at the front
return(df.assign(mean=df.mean(1)).iloc[:,index]) # new df with last column (mean) first
A simple approach is using set(), in particular when you have a long list of columns and do not want to handle them manually:
cols = list(set(df.columns.tolist()) - set(['mean']))
cols.insert(0, 'mean')
df = df[cols]
How about using T?
df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
I believe #Aman's answer is the best if you know the location of the other column.
If you don't know the location of mean, but only have its name, you cannot resort directly to cols = cols[-1:] + cols[:-1]. Following is the next-best thing I could come up with:
meanDf = pd.DataFrame(df.pop('mean'))
# now df doesn't contain "mean" anymore. Order of join will move it to left or right:
meanDf.join(df) # has mean as first column
df.join(meanDf) # has mean as last column
Related
how to add costum ID in pandas dataframe [duplicate]
In pandas, how can I convert a column of a DataFrame into dtype object? Or better yet, into a factor? (For those who speak R, in Python, how do I as.factor()?) Also, what's the difference between pandas.Factor and pandas.Categorical?
You can use the astype method to cast a Series (one column): df['col_name'] = df['col_name'].astype(object) Or the entire DataFrame: df = df.astype(object) Update Since version 0.15, you can use the category datatype in a Series/column: df['col_name'] = df['col_name'].astype('category') Note: pd.Factor was been deprecated and has been removed in favor of pd.Categorical.
There's also pd.factorize function to use: # use the df data from #herrfz In [150]: pd.factorize(df.b) Out[150]: (array([0, 1, 0, 1, 2]), array(['yes', 'no', 'absent'], dtype=object)) In [152]: df['c'] = pd.factorize(df.b)[0] In [153]: df Out[153]: a b c 0 1 yes 0 1 2 no 1 2 3 yes 0 3 4 no 1 4 5 absent 2
Factor and Categorical are the same, as far as I know. I think it was initially called Factor, and then changed to Categorical. To convert to Categorical maybe you can use pandas.Categorical.from_array, something like this: In [27]: df = pd.DataFrame({'a' : [1, 2, 3, 4, 5], 'b' : ['yes', 'no', 'yes', 'no', 'absent']}) In [28]: df Out[28]: a b 0 1 yes 1 2 no 2 3 yes 3 4 no 4 5 absent In [29]: df['c'] = pd.Categorical.from_array(df.b).labels In [30]: df Out[30]: a b c 0 1 yes 2 1 2 no 1 2 3 yes 2 3 4 no 1 4 5 absent 0
How to change the order of columns in a pandas Dataframe [duplicate]
I have the following DataFrame (df): import numpy as np import pandas as pd df = pd.DataFrame(np.random.rand(10, 5)) I add more column(s) by assignment: df['mean'] = df.mean(1) How can I move the column mean to the front, i.e. set it as first column leaving the order of the other columns untouched?
One easy way would be to reassign the dataframe with a list of the columns, rearranged as needed. This is what you have now: In [6]: df Out[6]: 0 1 2 3 4 mean 0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543 1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208 2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596 3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653 4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371 5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165 6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529 7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149 8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195 9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593 In [7]: cols = df.columns.tolist() In [8]: cols Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean'] Rearrange cols in any way you want. This is how I moved the last element to the first position: In [12]: cols = cols[-1:] + cols[:-1] In [13]: cols Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L] Then reorder the dataframe like this: In [16]: df = df[cols] # OR df = df.ix[:, cols] In [17]: df Out[17]: mean 0 1 2 3 4 0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616 1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551 2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694 3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019 4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485 5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447 6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473 7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914 8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561 9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
You could also do something like this: df = df[['mean', '0', '1', '2', '3']] You can get the list of columns with: cols = list(df.columns.values) The output will produce: ['0', '1', '2', '3', 'mean'] ...which is then easy to rearrange manually before dropping it into the first function
Just assign the column names in the order you want them: In [39]: df Out[39]: 0 1 2 3 4 mean 0 0.172742 0.915661 0.043387 0.712833 0.190717 1 1 0.128186 0.424771 0.590779 0.771080 0.617472 1 2 0.125709 0.085894 0.989798 0.829491 0.155563 1 3 0.742578 0.104061 0.299708 0.616751 0.951802 1 4 0.721118 0.528156 0.421360 0.105886 0.322311 1 5 0.900878 0.082047 0.224656 0.195162 0.736652 1 6 0.897832 0.558108 0.318016 0.586563 0.507564 1 7 0.027178 0.375183 0.930248 0.921786 0.337060 1 8 0.763028 0.182905 0.931756 0.110675 0.423398 1 9 0.848996 0.310562 0.140873 0.304561 0.417808 1 In [40]: df = df[['mean', 4,3,2,1]] Now, 'mean' column comes out in the front: In [41]: df Out[41]: mean 4 3 2 1 0 1 0.190717 0.712833 0.043387 0.915661 1 1 0.617472 0.771080 0.590779 0.424771 2 1 0.155563 0.829491 0.989798 0.085894 3 1 0.951802 0.616751 0.299708 0.104061 4 1 0.322311 0.105886 0.421360 0.528156 5 1 0.736652 0.195162 0.224656 0.082047 6 1 0.507564 0.586563 0.318016 0.558108 7 1 0.337060 0.921786 0.930248 0.375183 8 1 0.423398 0.110675 0.931756 0.182905 9 1 0.417808 0.304561 0.140873 0.310562
For pandas >= 1.3 (Edited in 2022): df.insert(0, 'mean', df.pop('mean')) How about (for Pandas < 1.3, the original answer) df.insert(0, 'mean', df['mean']) https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
In your case, df = df.reindex(columns=['mean',0,1,2,3,4]) will do exactly what you want. In my case (general form): df = df.reindex(columns=sorted(df.columns)) df = df.reindex(columns=(['opened'] + list([a for a in df.columns if a != 'opened']) ))
import numpy as np import pandas as pd df = pd.DataFrame() column_names = ['x','y','z','mean'] for col in column_names: df[col] = np.random.randint(0,100, size=10000) You can try out the following solutions : Solution 1: df = df[ ['mean'] + [ col for col in df.columns if col != 'mean' ] ] Solution 2: df = df[['mean', 'x', 'y', 'z']] Solution 3: col = df.pop("mean") df = df.insert(0, col.name, col) Solution 4: df.set_index(df.columns[-1], inplace=True) df.reset_index(inplace=True) Solution 5: cols = list(df) cols = [cols[-1]] + cols[:-1] df = df[cols] solution 6: order = [1,2,3,0] # setting column's order df = df[[df.columns[i] for i in order]] Time Comparison: Solution 1: CPU times: user 1.05 ms, sys: 35 µs, total: 1.08 ms Wall time: 995 µs Solution 2: CPU times: user 933 µs, sys: 0 ns, total: 933 µs Wall time: 800 µs Solution 3: CPU times: user 0 ns, sys: 1.35 ms, total: 1.35 ms Wall time: 1.08 ms Solution 4: CPU times: user 1.23 ms, sys: 45 µs, total: 1.27 ms Wall time: 986 µs Solution 5: CPU times: user 1.09 ms, sys: 19 µs, total: 1.11 ms Wall time: 949 µs Solution 6: CPU times: user 955 µs, sys: 34 µs, total: 989 µs Wall time: 859 µs
You need to create a new list of your columns in the desired order, then use df = df[cols] to rearrange the columns in this new order. cols = ['mean'] + [col for col in df if col != 'mean'] df = df[cols] You can also use a more general approach. In this example, the last column (indicated by -1) is inserted as the first column. cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]] df = df[cols] You can also use this approach for reordering columns in a desired order if they are present in the DataFrame. inserted_cols = ['a', 'b', 'c'] cols = ([col for col in inserted_cols if col in df] + [col for col in df if col not in inserted_cols]) df = df[cols]
Suppose you have df with columns A B C. The most simple way is: df = df.reindex(['B','C','A'], axis=1)
If your column names are too-long-to-type then you could specify the new order through a list of integers with the positions: Data: 0 1 2 3 4 mean 0 0.397312 0.361846 0.719802 0.575223 0.449205 0.500678 1 0.287256 0.522337 0.992154 0.584221 0.042739 0.485741 2 0.884812 0.464172 0.149296 0.167698 0.793634 0.491923 3 0.656891 0.500179 0.046006 0.862769 0.651065 0.543382 4 0.673702 0.223489 0.438760 0.468954 0.308509 0.422683 5 0.764020 0.093050 0.100932 0.572475 0.416471 0.389390 6 0.259181 0.248186 0.626101 0.556980 0.559413 0.449972 7 0.400591 0.075461 0.096072 0.308755 0.157078 0.207592 8 0.639745 0.368987 0.340573 0.997547 0.011892 0.471749 9 0.050582 0.714160 0.168839 0.899230 0.359690 0.438500 Generic example: new_order = [3,2,1,4,5,0] print(df[df.columns[new_order]]) 3 2 1 4 mean 0 0 0.575223 0.719802 0.361846 0.449205 0.500678 0.397312 1 0.584221 0.992154 0.522337 0.042739 0.485741 0.287256 2 0.167698 0.149296 0.464172 0.793634 0.491923 0.884812 3 0.862769 0.046006 0.500179 0.651065 0.543382 0.656891 4 0.468954 0.438760 0.223489 0.308509 0.422683 0.673702 5 0.572475 0.100932 0.093050 0.416471 0.389390 0.764020 6 0.556980 0.626101 0.248186 0.559413 0.449972 0.259181 7 0.308755 0.096072 0.075461 0.157078 0.207592 0.400591 8 0.997547 0.340573 0.368987 0.011892 0.471749 0.639745 9 0.899230 0.168839 0.714160 0.359690 0.438500 0.050582 Although it might seem like I'm just explicitly typing the column names in a different order, the fact that there's a column 'mean' should make it clear that new_order relates to actual positions and not column names. For the specific case of OP's question: new_order = [-1,0,1,2,3,4] df = df[df.columns[new_order]] print(df) mean 0 1 2 3 4 0 0.500678 0.397312 0.361846 0.719802 0.575223 0.449205 1 0.485741 0.287256 0.522337 0.992154 0.584221 0.042739 2 0.491923 0.884812 0.464172 0.149296 0.167698 0.793634 3 0.543382 0.656891 0.500179 0.046006 0.862769 0.651065 4 0.422683 0.673702 0.223489 0.438760 0.468954 0.308509 5 0.389390 0.764020 0.093050 0.100932 0.572475 0.416471 6 0.449972 0.259181 0.248186 0.626101 0.556980 0.559413 7 0.207592 0.400591 0.075461 0.096072 0.308755 0.157078 8 0.471749 0.639745 0.368987 0.340573 0.997547 0.011892 9 0.438500 0.050582 0.714160 0.168839 0.899230 0.359690 The main problem with this approach is that calling the same code multiple times will create different results each time, so one needs to be careful :)
This question has been answered before but reindex_axis is deprecated now so I would suggest to use: df = df.reindex(sorted(df.columns), axis=1) For those who want to specify the order they want instead of just sorting them, here's the solution spelled out: df = df.reindex(['the','order','you','want'], axis=1) Now, how you want to sort the list of column names is really not a pandas question, that's a Python list manipulation question. There are many ways of doing that, and I think this answer has a very neat way of doing it.
You can reorder the dataframe columns using a list of names with: df = df.filter(list_of_col_names)
I think this is a slightly neater solution: df.insert(0, 'mean', df.pop("mean")) This solution is somewhat similar to #JoeHeffer 's solution but this is one liner. Here we remove the column "mean" from the dataframe and attach it to index 0 with the same column name.
I ran into a similar question myself, and just wanted to add what I settled on. I liked the reindex_axis() method for changing column order. This worked: df = df.reindex_axis(['mean'] + list(df.columns[:-1]), axis=1) An alternate method based on the comment from #Jorge: df = df.reindex(columns=['mean'] + list(df.columns[:-1])) Although reindex_axis seems to be slightly faster in micro benchmarks than reindex, I think I prefer the latter for its directness.
This function avoids you having to list out every variable in your dataset just to order a few of them. def order(frame,var): if type(var) is str: var = [var] #let the command take a string or list varlist =[w for w in frame.columns if w not in var] frame = frame[var+varlist] return frame It takes two arguments, the first is the dataset, the second are the columns in the data set that you want to bring to the front. So in my case I have a data set called Frame with variables A1, A2, B1, B2, Total and Date. If I want to bring Total to the front then all I have to do is: frame = order(frame,['Total']) If I want to bring Total and Date to the front then I do: frame = order(frame,['Total','Date']) EDIT: Another useful way to use this is, if you have an unfamiliar table and you're looking with variables with a particular term in them, like VAR1, VAR2,... you may execute something like: frame = order(frame,[v for v in frame.columns if "VAR" in v])
Simply do, df = df[['mean'] + df.columns[:-1].tolist()]
Here's a way to move one existing column that will modify the existing dataframe in place. my_column = df.pop('column name') df.insert(3, my_column.name, my_column) # Is in-place
Just type the column name you want to change, and set the index for the new location. def change_column_order(df, col_name, index): cols = df.columns.tolist() cols.remove(col_name) cols.insert(index, col_name) return df[cols] For your case, this would be like: df = change_column_order(df, 'mean', 0)
You could do the following (borrowing parts from Aman's answer): cols = df.columns.tolist() cols.insert(0, cols.pop(-1)) cols >>>['mean', 0L, 1L, 2L, 3L, 4L] df = df[cols]
Moving any column to any position: import pandas as pd df = pd.DataFrame({"A": [1,2,3], "B": [2,4,8], "C": [5,5,5]}) cols = df.columns.tolist() column_to_move = "C" new_position = 1 cols.insert(new_position, cols.pop(cols.index(column_to_move))) df = df[cols]
I wanted to bring two columns in front from a dataframe where I do not know exactly the names of all columns, because they are generated from a pivot statement before. So, if you are in the same situation: To bring columns in front that you know the name of and then let them follow by "all the other columns", I came up with the following general solution: df = df.reindex_axis(['Col1','Col2'] + list(df.columns.drop(['Col1','Col2'])), axis=1)
Here is a very simple answer to this(only one line). You can do that after you added the 'n' column into your df as follows. import numpy as np import pandas as pd df = pd.DataFrame(np.random.rand(10, 5)) df['mean'] = df.mean(1) df 0 1 2 3 4 mean 0 0.929616 0.316376 0.183919 0.204560 0.567725 0.440439 1 0.595545 0.964515 0.653177 0.748907 0.653570 0.723143 2 0.747715 0.961307 0.008388 0.106444 0.298704 0.424512 3 0.656411 0.809813 0.872176 0.964648 0.723685 0.805347 4 0.642475 0.717454 0.467599 0.325585 0.439645 0.518551 5 0.729689 0.994015 0.676874 0.790823 0.170914 0.672463 6 0.026849 0.800370 0.903723 0.024676 0.491747 0.449473 7 0.526255 0.596366 0.051958 0.895090 0.728266 0.559587 8 0.818350 0.500223 0.810189 0.095969 0.218950 0.488736 9 0.258719 0.468106 0.459373 0.709510 0.178053 0.414752 ### here you can add below line and it should work # Don't forget the two (()) 'brackets' around columns names.Otherwise, it'll give you an error. df = df[list(('mean',0, 1, 2,3,4))] df mean 0 1 2 3 4 0 0.440439 0.929616 0.316376 0.183919 0.204560 0.567725 1 0.723143 0.595545 0.964515 0.653177 0.748907 0.653570 2 0.424512 0.747715 0.961307 0.008388 0.106444 0.298704 3 0.805347 0.656411 0.809813 0.872176 0.964648 0.723685 4 0.518551 0.642475 0.717454 0.467599 0.325585 0.439645 5 0.672463 0.729689 0.994015 0.676874 0.790823 0.170914 6 0.449473 0.026849 0.800370 0.903723 0.024676 0.491747 7 0.559587 0.526255 0.596366 0.051958 0.895090 0.728266 8 0.488736 0.818350 0.500223 0.810189 0.095969 0.218950 9 0.414752 0.258719 0.468106 0.459373 0.709510 0.178053
You can use a set which is an unordered collection of unique elements to do keep the "order of the other columns untouched": other_columns = list(set(df.columns).difference(["mean"])) #[0, 1, 2, 3, 4] Then, you can use a lambda to move a specific column to the front by: In [1]: import numpy as np In [2]: import pandas as pd In [3]: df = pd.DataFrame(np.random.rand(10, 5)) In [4]: df["mean"] = df.mean(1) In [5]: move_col_to_front = lambda df, col: df[[col]+list(set(df.columns).difference([col]))] In [6]: move_col_to_front(df, "mean") Out[6]: mean 0 1 2 3 4 0 0.697253 0.600377 0.464852 0.938360 0.945293 0.537384 1 0.609213 0.703387 0.096176 0.971407 0.955666 0.319429 2 0.561261 0.791842 0.302573 0.662365 0.728368 0.321158 3 0.518720 0.710443 0.504060 0.663423 0.208756 0.506916 4 0.616316 0.665932 0.794385 0.163000 0.664265 0.793995 5 0.519757 0.585462 0.653995 0.338893 0.714782 0.305654 6 0.532584 0.434472 0.283501 0.633156 0.317520 0.994271 7 0.640571 0.732680 0.187151 0.937983 0.921097 0.423945 8 0.562447 0.790987 0.200080 0.317812 0.641340 0.862018 9 0.563092 0.811533 0.662709 0.396048 0.596528 0.348642 In [7]: move_col_to_front(df, 2) Out[7]: 2 0 1 3 4 mean 0 0.938360 0.600377 0.464852 0.945293 0.537384 0.697253 1 0.971407 0.703387 0.096176 0.955666 0.319429 0.609213 2 0.662365 0.791842 0.302573 0.728368 0.321158 0.561261 3 0.663423 0.710443 0.504060 0.208756 0.506916 0.518720 4 0.163000 0.665932 0.794385 0.664265 0.793995 0.616316 5 0.338893 0.585462 0.653995 0.714782 0.305654 0.519757 6 0.633156 0.434472 0.283501 0.317520 0.994271 0.532584 7 0.937983 0.732680 0.187151 0.921097 0.423945 0.640571 8 0.317812 0.790987 0.200080 0.641340 0.862018 0.562447 9 0.396048 0.811533 0.662709 0.596528 0.348642 0.563092
Just flipping helps often. df[df.columns[::-1]] Or just shuffle for a look. import random cols = list(df.columns) random.shuffle(cols) df[cols]
You can use reindex which can be used for both axis: df # 0 1 2 3 4 mean # 0 0.943825 0.202490 0.071908 0.452985 0.678397 0.469921 # 1 0.745569 0.103029 0.268984 0.663710 0.037813 0.363821 # 2 0.693016 0.621525 0.031589 0.956703 0.118434 0.484254 # 3 0.284922 0.527293 0.791596 0.243768 0.629102 0.495336 # 4 0.354870 0.113014 0.326395 0.656415 0.172445 0.324628 # 5 0.815584 0.532382 0.195437 0.829670 0.019001 0.478415 # 6 0.944587 0.068690 0.811771 0.006846 0.698785 0.506136 # 7 0.595077 0.437571 0.023520 0.772187 0.862554 0.538182 # 8 0.700771 0.413958 0.097996 0.355228 0.656919 0.444974 # 9 0.263138 0.906283 0.121386 0.624336 0.859904 0.555009 df.reindex(['mean', *range(5)], axis=1) # mean 0 1 2 3 4 # 0 0.469921 0.943825 0.202490 0.071908 0.452985 0.678397 # 1 0.363821 0.745569 0.103029 0.268984 0.663710 0.037813 # 2 0.484254 0.693016 0.621525 0.031589 0.956703 0.118434 # 3 0.495336 0.284922 0.527293 0.791596 0.243768 0.629102 # 4 0.324628 0.354870 0.113014 0.326395 0.656415 0.172445 # 5 0.478415 0.815584 0.532382 0.195437 0.829670 0.019001 # 6 0.506136 0.944587 0.068690 0.811771 0.006846 0.698785 # 7 0.538182 0.595077 0.437571 0.023520 0.772187 0.862554 # 8 0.444974 0.700771 0.413958 0.097996 0.355228 0.656919 # 9 0.555009 0.263138 0.906283 0.121386 0.624336 0.859904
Hackiest method in the book df.insert(0, "test", df["mean"]) df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
A pretty straightforward solution that worked for me is to use .reindex on df.columns: df = df[df.columns.reindex(['mean', 0, 1, 2, 3, 4])[0]]
Here is a function to do this for any number of columns. def mean_first(df): ncols = df.shape[1] # Get the number of columns index = list(range(ncols)) # Create an index to reorder the columns index.insert(0,ncols) # This puts the last column at the front return(df.assign(mean=df.mean(1)).iloc[:,index]) # new df with last column (mean) first
A simple approach is using set(), in particular when you have a long list of columns and do not want to handle them manually: cols = list(set(df.columns.tolist()) - set(['mean'])) cols.insert(0, 'mean') df = df[cols]
How about using T? df = df.T.reindex(['mean', 0, 1, 2, 3, 4]).T
I believe #Aman's answer is the best if you know the location of the other column. If you don't know the location of mean, but only have its name, you cannot resort directly to cols = cols[-1:] + cols[:-1]. Following is the next-best thing I could come up with: meanDf = pd.DataFrame(df.pop('mean')) # now df doesn't contain "mean" anymore. Order of join will move it to left or right: meanDf.join(df) # has mean as first column df.join(meanDf) # has mean as last column
Convert ordered levels to numeric in pandas
I was wondering is there any function in pandas that allows me to do this. I have a column with levels [low, medium, high]. I would like to translate them to [1,2,3] to perform linear regression. However, what i am currently doing is df[df['interest_level'] == 'low'] = 1. is there a better way of doing this? Thanks.
use pd.factorize() method: df['interest_level'] = pd.factorize(df['interest_level'])[0] you can also categorize your new numerical values (this might save a lot of memory): Sample DataFrame: In [34]: df = pd.DataFrame({'interest_level':np.random.choice(['medium','high','low'], 10)}) In [35]: df Out[35]: interest_level 0 high 1 low 2 medium 3 high 4 low 5 high 6 high 7 low 8 low 9 medium Solution: In [36]: df['interest_level'], cats = pd.factorize(df['interest_level']) In [37]: df['interest_level'] = pd.Categorical(df['interest_level'], categories=np.arange(len(cats))) In [38]: df Out[38]: interest_level 0 0 1 1 2 2 3 0 4 1 5 0 6 0 7 1 8 1 9 2 In [39]: cats # this can be used for the backtracing ... Out[39]: Index(['high', 'low', 'medium'], dtype='object') In [40]: df.memory_usage() Out[40]: Index 80 interest_level 34 # <---- NOTE: only 34 bytes used for 10 integers dtype: int64 In [41]: df.dtypes Out[41]: interest_level category dtype: object
You can use map: d = {'low':1,'medium':2,'high':3} df['interest_level'] = df['interest_level'].map(d) Sample: df = pd.DataFrame({'interest_level':['medium','high','low', 'low', 'medium']}) print (df) interest_level 0 medium 1 high 2 low 3 low 4 medium d = {'low':1,'medium':2,'high':3} df['interest_level'] = df['interest_level'].map(d) print (df) interest_level 0 2 1 3 2 1 3 1 4 2 Another solution is cast to Categorical and then use cat.codes: categories = ['low','medium','high'] df['interest_level'] = df['interest_level'].astype('category', categories=categories, ordered=True).cat.codes + 1 print (df) interest_level 0 2 1 3 2 1 3 1 4 2
In PANDAS, how to get the index of a known value?
If we have a known value in a column, how can we get its index-value? For example: In [148]: a = pd.DataFrame(np.arange(10).reshape(5,2),columns=['c1','c2']) In [149]: a Out[149]: c1 c2 0 0 1 1 2 3 2 4 5 ........ As we know, we can get a value by the index corresponding to it, like this. In [151]: a.ix[0,1] In [152]: a.c2[0] In [154]: a.c2.ix[0] <-- use index Out[151]: 1 Out[152]: 1 Out[154]: 1 <-- get value But how to get the index by value?
There might be more than one index map to your value, it make more sense to return a list: In [48]: a Out[48]: c1 c2 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 In [49]: a.c1[a.c1 == 8].index.tolist() Out[49]: [4]
Using the .loc[] accessor: In [25]: a.loc[a['c1'] == 8].index[0] Out[25]: 4 Can also use the get_loc() by setting 'c1' as the index. This will not change the original dataframe. In [17]: a.set_index('c1').index.get_loc(8) Out[17]: 4
The other way around using numpy.where() : import numpy as np import pandas as pd In [800]: df = pd.DataFrame(np.arange(10).reshape(5,2),columns=['c1','c2']) In [801]: df Out[801]: c1 c2 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 In [802]: np.where(df["c1"]==6) Out[802]: (array([3]),) In [803]: indices = list(np.where(df["c1"]==6)[0]) In [804]: df.iloc[indices] Out[804]: c1 c2 3 6 7 In [805]: df.iloc[indices].index Out[805]: Int64Index([3], dtype='int64') In [806]: df.iloc[indices].index.tolist() Out[806]: [3]
To get the index by value, simply add .index[0] to the end of a query. This will return the index of the first row of the result... So, applied to your dataframe: In [1]: a[a['c2'] == 1].index[0] In [2]: a[a['c1'] > 7].index[0] Out[1]: 0 Out[2]: 4 Where the query returns more than one row, the additional index results can be accessed by specifying the desired index, e.g. .index[n] In [3]: a[a['c2'] >= 7].index[1] In [4]: a[(a['c2'] > 1) & (a['c1'] < 8)].index[2] Out[3]: 4 Out[4]: 3
I think this may help you , both index and columns of the values. value you are looking for is not duplicated: poz=matrix[matrix==minv].dropna(axis=1,how='all').dropna(how='all') value=poz.iloc[0,0] index=poz.index.item() column=poz.columns.item() you can get its index and column duplicated: matrix=pd.DataFrame([[1,1],[1,np.NAN]],index=['q','g'],columns=['f','h']) matrix Out[83]: f h q 1 1.0 g 1 NaN poz=matrix[matrix==minv].dropna(axis=1,how='all').dropna(how='all') index=poz.stack().index.tolist() index Out[87]: [('q', 'f'), ('q', 'h'), ('g', 'f')] you will get a list
How to make first level of MultiIndex as the columns?
Say I have a MultiIndex dataframe like: In [1]: arrays = [['one','one','one','two','two','two'],[1,2,3,1,2,3]] In [2]: df = pa.DataFrame(randn(6,1),index=pa.MultiIndex.from_tuples(zip(*arrays)),columns=['A']) In [3]: df Out[3]: A one 1 0.229037 2 -1.640695 3 0.908127 two 1 -0.918750 2 1.170112 3 -2.620850 I would like to change this to a new dataframe, with the columns as the first level index of the MultiIndex dataframe? Is there an easy way? (below an example) In [12]: dft = df.ix['one'] In [13]: dft = dft.rename(columns={'A':'one'}) In [14]: dft['two'] = df.ix['two']['A'] In [15]: dft Out[15]: one two 1 0.229037 -0.918750 2 -1.640695 1.170112 3 0.908127 -2.620850
Perhaps you are looking for pandas.unstack: In [56]: df Out[56]: A one 1 0.229037 2 -1.640695 3 0.908127 two 1 -0.918750 2 1.170112 3 -2.620850 In [57]: df.unstack(level=0) Out[57]: A one two 1 0.229037 -0.918750 2 -1.640695 1.170112 3 0.908127 -2.620850
Just to add something to this, there is another option of making a multi-index into columns using the reset_index() function. The difference here being that it simply "pops" out the values as new columns. Depends on your usecase: In [5]: df Out[5]: A one 1 -1.598591 2 -0.354813 3 -0.435924 two 1 1.408328 2 0.448303 3 0.381360 In [6]: df.reset_index() Out[6]: level_0 level_1 A 0 one 1 -1.598591 1 one 2 -0.354813 2 one 3 -0.435924 3 two 1 1.408328 4 two 2 0.448303 5 two 3 0.381360