I have this func that splits my initial img into arrays of 100x100
def blockshaped(arr, nrows, ncols):
h, w = arr.shape
return (arr.reshape(h//nrows, nrows, -1, ncols)
.swapaxes(1,2)
.reshape(-1, nrows, ncols))
Then this loop makes a new_img filled with arrays of zeros if enumerate == even, and block if is not
image = np.full((1000,2000),5)
blocks = blockshaped(image,100,100)
new_image = []
for i,block in enumerate(blocks):
if i%2==0:
new_image.append(np.zeros((100,100)))
else:
new_image.append(block)
Now I dont know how can I build a final image 1000x2000 filled with my new_image arrays.
Any idea???
You can just invert the steps you apply in blockshaped() to achieve this. Note that I renamed some of your variables to make the descriptions
shorter.
import numpy as np
def blockshaped(arr, nrows, ncols):
r, c = arr.shape # (r, c)
return (arr.reshape(r//nrows, nrows, c//ncols, ncols) # -> (r/n, n, c/m, m)
.swapaxes(1, 2) # -> (r/n, c/m, n, m)
.reshape(-1, nrows, ncols)) # -> (r/n * c/m, n, m)
r, c = 1000, 2000
n, m = 100, 100
image = np.full((r, c), 5)
blocks = blockshaped(image, nrows=n, ncols=m)
# Create new empty image and only fill in the even blocks
new_image = np.zeros((len(blocks), n, m))
new_image[::2] = blocks[::2]
# new_image[1::2] = np.full((n, m), 13) # do something odd if you want
# reverse blockshaped # (r/n * c/m, n, m)
new_image = (new_image.reshape(r//n, c//m, n, m) # -> (r/n, c/m, n, m)
.swapaxes(1, 2) # -> (r/n, n, c/m, m)
.reshape(image.shape)) # -> (r, c)
import matplotlib.pyplot as plt
plt.imshow(new_image)
You have created 200 number of 100 x 100 array using
image = np.full((1000, 2000), 5)
blocks = block_shaped(image, 100, 100)
Then you want to fill the new array with the block values if counter is odd number.
new_image = []
for i,block in enumerate(blocks):
if i%2==0:
new_image.append(np.zeros((100,100)))
else:
new_image.append(block)
Instead of initializing new_imageĀ as an empty list, initialize as a numpy zeros array. The problem is what is the shape of the new_image?
The answer depends.
If you want each row to be the blocks value, then you need to declare the size:
new_image = np.zeros(shape=(2000, 10000))
Since each block is 100 x 100 = 10000 and the size of block is 200 x 100 x 100. We place each row block value, for instance new_image[0, 10000] = block.
import numpy as np
from PIL import Image
def block_shaped(arr, n_rows, n_cols):
h, w = arr.shape
return (arr.reshape(h//n_rows, n_rows, -1, n_cols).swapaxes(1, 2).reshape(-1, n_rows, n_cols))
image = np.full((1000, 2000), 5)
blocks = block_shaped(image, 100, 100)
new_image = np.zeros(shape=(2000, 10000), dtype=np.uint8)
for i, block in enumerate(blocks):
if i % 2 != 0:
new_image[i, :] = block.flatten()
new_image = Image.fromarray(new_image)
new_image.show()
Result will be a blank image, but if you change image = np.full((1000, 2000), 5) to image = np.full((1000, 2000), 155). Then the result will be:
Upper part becomes gray.
If you want to set only (100, 100) parts of the image to the block for each odd i:
import numpy as np
from PIL import Image
def block_shaped(arr, n_rows, n_cols):
h, w = arr.shape
return (arr.reshape(h//n_rows, n_rows, -1, n_cols).swapaxes(1, 2).reshape(-1, n_rows, n_cols))
image = np.full((1000, 2000), 155)
blocks = block_shaped(image, 100, 100)
new_image = np.zeros(shape=(1000, 2000), dtype=np.uint8)
for i, block in enumerate(blocks):
if i % 2 != 0:
new_image[i:100+i, i:100+i] = block
new_image = Image.fromarray(new_image)
new_image.show()
Result:
Related
I have a system given by this recursive relationship: xt = At xt-1 + bt. I wish to compute xt for all t, with At, bt and x0 given. Is there are built-in function for that? If I use a loop it would be extremely slow. Thanks!
There is sort of a way. Let's say you have your A matrices in a 3D tensor with shape (T, N, N), where T is the total number of time steps and N is the size of your vector. Similarly, B values are in a 2D tensor (T, N). The first step in the computation would be:
x1 = A[0] # x0 + B[0]
Where # represents matrix product. But you can convert this into a single matrix product. Suppose we add a value 1 at the end of x0, and we call that x0p (for prime):
x0p = tf.concat([x, [1]], axis=0)
And now we build a new 3D tensor Ap with shape (T, N+1, N+1), such that for each A[i] we concatenate B[i] as a new column, and then we add a row with N zeros and a single one at the end:
AwithB = tf.concat([tf.concat([A, tf.expand_dims(B, 2)], axis=2)], axis=1)
AnewRow = tf.concat([tf.zeros((T, 1, N), A.dtype), tf.ones((T, 1, 1), A.dtype)], axis=2)
Ap = tf.concat([AwithB, AnewRow], axis=1)
As it turns out, you can now say:
x1p = Ap[0] # x0p
And therefore:
x2p = Ap[1] # x1p = Ap[1] # Ap[0] # x0p
So we just need to compute all the matrix product of all matrices in Ap across the first dimension. Unfortunately, there does not seem to be a direct operation to compute that with TensorFlow, but you can do it relatively fast with tf.scan:
Ap_prod = tf.scan(tf.matmul, Ap)[-1]
And with that you just have to do:
xtp = Ap_prod # x0p
Here is a proof of concept (the code is tweaked to support single examples and batches, either in the A and B values or in the x)
import tensorflow as tf
def compute_state(a, b, x):
s = tf.shape(a)
t = s[-3]
n = s[-1]
# Add final 1 to x
xp = tf.concat([x, tf.ones_like(x[..., :1])], axis=-1)
# Add B column to A
a_b = tf.concat([tf.concat([a, tf.expand_dims(b, axis=-1)], axis=-1)], axis=-2)
# Make new final row for A
a_row = tf.concat([tf.zeros_like(a[..., :1, :]),
tf.ones_like(a[..., :1, :1])], axis=-1)
# Add new row to A
ap = tf.concat([a_b, a_row], axis=-2)
# Compute matrix product reduction
ap_prod = tf.scan(tf.matmul, ap)[..., -1, :, :]
# Compute final result
outp = tf.linalg.matvec(ap_prod, xp)
return outp[..., :-1]
#Test
tf.random.set_seed(0)
a = tf.random.uniform((10, 5, 5), -1, 1)
b = tf.random.uniform((10, 5), -1, 1)
x = tf.random.uniform((5,), -1, 1)
y = compute_state(a, b, x)
# Also works with batches of (a, b) or x
a = tf.random.uniform((100, 10, 5, 5), -1, 1)
b = tf.random.uniform((100, 10, 5), -1, 1)
x = tf.random.uniform((100, 5), -1, 1)
y = compute_state(a, b, x)
I'm looking for a FAST (and if possible memory afficiant) way to rewrite a function I crerated as part of Visual bag of words algorithm:
def get_pic_patches(pic, l, s): # "s" stands for stride
r, c = pic.shape
i, j = [0, 0]
x_range = list(range(0, r, s ) )
y_range = list(range(0, c , s ) )
patches = []
patches_location = []
for x in x_range: # without last two since it will exceed dimensions
for y in y_range: # without last two since it will exceed dimensions
if x+ l<= r and y+l <= c:
patch = pic[x:x + l , y:y + l ]
patches_location.append([x, y]) # patch location is the upper left pixel
patches.append( patch )
return patches, patches_location
it takes a grayscale image (NOT RGB!), desired patch length and stride value,
and gives back all patches as a list of numpy array.
On other qestions, I found this:
def patchify(img, patch_shape):
img = np.ascontiguousarray(img) # won't make a copy if not needed
X, Y = img.shape
x, y = patch_shape
shape = ((X-x+1), (Y-y+1), x, y) # number of patches, patch_shape
strides = img.itemsize*np.array([Y, 1, Y, 1])
return np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
in order to get to return a list, I used it like this:
def patchify(img, patch_shape):
img = np.ascontiguousarray(img) # won't make a copy if not needed
X, Y = img.shape
x, y = patch_shape
shape = ((X-x+1), (Y-y+1), x, y) # number of patches, patch_shape
strides = img.itemsize*np.array([Y, 1, Y, 1])
patches = np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
a,b,c,d = patches.shape
patches = patches.reshape(((a*b),c,d))
patches = patches.tolist()
return
but this was actually much slower than my original function! another problem is that is only works with stride = 1, and I want to be able to use all sorts of stride values.
I want to create a function f which will take input x and gives output y as: y = f(x)
f(x) = c1 exp( (x-m1) /l1 ) + c2 exp( (x-m2) /l2 ) + ......
here, x is input tensor. cn, mn and ln (n=1 to N) are Tensorflow scalar variables (N*3 variables).
Solution 1) Explicit broadcasting then reduction:
tiling = [1] * len(x.get_shape().as_list()) + [n]
res = tf.reduce_sum(
c * tf.exp((tf.tile(tf.expand_dims(x, axis=-1), tiling) - m) / l),
axis=-1)
Solution 2) Looping over n:
condition = lambda i, y: i < n
operation = lambda i, y: [i+1, y + c[i] * tf.exp((x - m[i]) / l[i])]
_, res = tf.while_loop(condition, operation,
loop_vars=[0, tf.zeros_like(x)],
shape_invariants=[tf.TensorShape([]), x.get_shape()])
Example:
import tensorflow as tf
import numpy as np
# Inputs for example:
x_val = np.random.rand(3, 2)
n = 3
c_val, m_val, l_val = np.random.rand(3, n)
x = tf.constant(x_val)
c, m, l = tf.constant(c_val), tf.constant(m_val), tf.constant(l_val)
# Getting numpy result for comparison:
res = np.sum([c_val[i] * np.exp((x_val - m_val[i]) / l_val[i]) for i in range(n)], axis=0)
print(res)
# [[ 2.55195594 0.42834575]
# [ 0.29125215 0.29025419]
# [ 0.74048059 1.63411303]]
# Solution 1:
tiling = [1] * len(x.get_shape().as_list()) + [n]
res_broad = tf.reduce_sum(c * tf.exp((tf.tile(tf.expand_dims(x, axis=-1), tiling) - m) / l),
axis=-1)
# Solution 2:
condition = lambda i, y: i < n
operation = lambda i, y: [i+1, y + c[i] * tf.exp((x - m[i]) / l[i])]
_, res_loop = tf.while_loop(condition, operation,
loop_vars=[0, tf.zeros_like(x)],
shape_invariants=[tf.TensorShape([]), x.get_shape()])
with tf.Session() as sess:
print(sess.run(res_broad))
# [[2.55195594 0.42834575]
# [0.29125215 0.29025419]
# [0.74048059 1.63411303]]
print(sess.run(res_loop))
# [[2.55195594 0.42834575]
# [0.29125215 0.29025419]
# [0.74048059 1.63411303]]
I am trying to train the MNIST data (which I downloaded from Kaggle) with simple multi-class logistic regression, but the scipy.optimize functions hang.
Here's the code:
import csv
from math import exp
from numpy import *
from scipy.optimize import fmin, fmin_cg, fmin_powell, fmin_bfgs
# Prepare the data
def getIiter(ifname):
"""
Get the iterator from a csv file with filename ifname
"""
ifile = open(ifname, 'r')
iiter = csv.reader(ifile)
iiter.__next__()
return iiter
def parseRow(s):
y = [int(x) for x in s]
lab = y[0]
z = y[1:]
return (lab, z)
def getAllRows(ifname):
iiter = getIiter(ifname)
x = []
l = []
for row in iiter:
lab, z = parseRow(row)
x.append(z)
l.append(lab)
return x, l
def cutData(x, y):
"""
70% training
30% testing
"""
m = len(x)
t = int(m * .7)
return [(x[:t], y[:t]), (x[t:], y[t:])]
def num2IndMat(l):
t = array(l)
tt = [vectorize(int)((t == i)) for i in range(10)]
return array(tt).T
def readData(ifname):
x, l = getAllRows(ifname)
t = [[1] + y for y in x]
return array(t), num2IndMat(l)
#Calculate the cost function
def sigmoid(x):
return 1 / (1 + exp(-x))
vSigmoid = vectorize(sigmoid)
vLog = vectorize(log)
def costFunction(theta, x, y):
sigxt = vSigmoid(dot(x, theta))
cm = (- y * vLog(sigxt) - (1 - y) * vLog(1 - sigxt)) / m / N
return sum(cm)
def unflatten(flatTheta):
return [flatTheta[i * N : (i + 1) * N] for i in range(n + 1)]
def costFunctionFlatTheta(flatTheta):
return costFunction(unflatten(flatTheta), trainX, trainY)
def costFunctionFlatTheta1(flatTheta):
return costFunction(flatTheta.reshape(785, 10), trainX, trainY)
x, y = readData('train.csv')
[(trainX, trainY), (testX, testY)] = cutData(x, y)
m = len(trainX)
n = len(trainX[0]) - 1
N = len(trainY[0])
initTheta = zeros(((n + 1), N))
flatInitTheta = ndarray.flatten(initTheta)
flatInitTheta1 = initTheta.reshape(1, -1)
In the last two lines we flatten initTheta because the fmin{,_cg,_bfgs,_powell} functions seem to only take vectors as the initial value argument x0. I also flatten initTheta using reshape in hope this answer can be of help.
There is no problem computing the cost function which takes up less than 2 seconds on my computer:
print(costFunctionFlatTheta(flatInitTheta), costFunctionFlatTheta1(flatInitTheta1))
# 0.69314718056 0.69314718056
But all the fmin functions hang, even if I set maxiter=0.
e.g.
newFlatTheta = fmin(costFunctionFlatTheta, flatInitTheta, maxiter=0)
or
newFlatTheta1 = fmin(costFunctionFlatTheta1, flatInitTheta1, maxiter=0)
When I interrupt the program, it seems to me it all hangs at lines in optimize.py calling the cost functions, lines like this:
return function(*(wrapper_args + args))
For example, if I use fmin_cg, this would be line 292 in optimize.py (Version 0.5).
How do I solve this problem?
OK I found a way to stop fmin_cg from hanging.
Basically I just need to write a function that computes the gradient of the cost function, and pass it to the fprime parameter of fmin_cg.
def gradient(theta, x, y):
return dot(x.T, vSigmoid(dot(x, theta)) - y) / m / N
def gradientFlatTheta(flatTheta):
return ndarray.flatten(gradient(flatTheta.reshape(785, 10), trainX, trainY))
Then
newFlatTheta = fmin_cg(costFunctionFlatTheta, flatInitTheta, fprime=gradientFlatTheta, maxiter=0)
terminates within seconds, and setting maxiter to a higher number (say 100) one can train the model within reasonable amount of time.
The documentation of fmin_cg says the gradient would be numerically computed if no fprime is given, which is what I suspect caused the hanging.
Thanks to this notebook by zgo2016#Kaggle which helped me find the solution.
In other words, I want to make a heatmap (or surface plot) where the color varies as a function of 2 variables. (Specifically, luminance = magnitude and hue = phase.) Is there any native way to do this?
Some examples of similar plots:
Several good examples of exactly(?) what I want to do.
More examples from astronomy, but with non-perceptual hue
Edit: This is what I did with it: https://github.com/endolith/complex_colormap
imshow can take an array of [r, g, b] entries. So you can convert the absolute values to intensities and phases - to hues.
I will use as an example complex numbers, because for it it makes the most sense. If needed, you can always add numpy arrays Z = X + 1j * Y.
So for your data Z you can use e.g.
imshow(complex_array_to_rgb(Z))
where (EDIT: made it quicker and nicer thanks to this suggestion)
def complex_array_to_rgb(X, theme='dark', rmax=None):
'''Takes an array of complex number and converts it to an array of [r, g, b],
where phase gives hue and saturaton/value are given by the absolute value.
Especially for use with imshow for complex plots.'''
absmax = rmax or np.abs(X).max()
Y = np.zeros(X.shape + (3,), dtype='float')
Y[..., 0] = np.angle(X) / (2 * pi) % 1
if theme == 'light':
Y[..., 1] = np.clip(np.abs(X) / absmax, 0, 1)
Y[..., 2] = 1
elif theme == 'dark':
Y[..., 1] = 1
Y[..., 2] = np.clip(np.abs(X) / absmax, 0, 1)
Y = matplotlib.colors.hsv_to_rgb(Y)
return Y
So, for example:
Z = np.array([[3*(x + 1j*y)**3 + 1/(x + 1j*y)**2
for x in arange(-1,1,0.05)] for y in arange(-1,1,0.05)])
imshow(complex_array_to_rgb(Z, rmax=5), extent=(-1,1,-1,1))
imshow(complex_array_to_rgb(Z, rmax=5, theme='light'), extent=(-1,1,-1,1))
imshow will take an NxMx3 (rbg) or NxMx4 (grba) array so you can do your color mapping 'by hand'.
You might be able to get a bit of traction by sub-classing Normalize to map your vector to a scaler and laying out a custom color map very cleverly (but I think this will end up having to bin one of your dimensions).
I have done something like this (pdf link, see figure on page 24), but the code is in MATLAB (and buried someplace in my archives).
I agree a bi-variate color map would be useful (primarily for representing very dense vector fields where your kinda up the creek no matter what you do).
I think the obvious extension is to let color maps take complex arguments. It would require specialized sub-classes of Normalize and Colormap and I am going back and forth on if I think it would be a lot of work to implement. I suspect if you get it working by hand it will just be a matter of api wrangling.
I created an easy to use 2D colormap class, that takes 2 NumPy arrays and maps them to an RGB image, based on a reference image.
I used #GjjvdBurg's answer as a starting point. With a bit of work, this could still be improved, and possibly turned into a proper Python module - if you want, feel free to do so, I grant you all credits.
TL;DR:
# read reference image
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
# map the data x and y to the RGB space, defined by the image
rgb = cmap_2d(data_x, data_y)
# generate a colorbar image
cbar_rgb = cmap_2d.generate_cbar()
The ColorMap2D class:
class ColorMap2D:
def __init__(self, filename: str, transpose=False, reverse_x=False, reverse_y=False, xclip=None, yclip=None):
"""
Maps two 2D array to an RGB color space based on a given reference image.
Args:
filename (str): reference image to read the x-y colors from
rotate (bool): if True, transpose the reference image (swap x and y axes)
reverse_x (bool): if True, reverse the x scale on the reference
reverse_y (bool): if True, reverse the y scale on the reference
xclip (tuple): clip the image to this portion on the x scale; (0,1) is the whole image
yclip (tuple): clip the image to this portion on the y scale; (0,1) is the whole image
"""
self._colormap_file = filename or COLORMAP_FILE
self._img = plt.imread(self._colormap_file)
if transpose:
self._img = self._img.transpose()
if reverse_x:
self._img = self._img[::-1,:,:]
if reverse_y:
self._img = self._img[:,::-1,:]
if xclip is not None:
imin, imax = map(lambda x: int(self._img.shape[0] * x), xclip)
self._img = self._img[imin:imax,:,:]
if yclip is not None:
imin, imax = map(lambda x: int(self._img.shape[1] * x), yclip)
self._img = self._img[:,imin:imax,:]
if issubclass(self._img.dtype.type, np.integer):
self._img = self._img / 255.0
self._width = len(self._img)
self._height = len(self._img[0])
self._range_x = (0, 1)
self._range_y = (0, 1)
#staticmethod
def _scale_to_range(u: np.ndarray, u_min: float, u_max: float) -> np.ndarray:
return (u - u_min) / (u_max - u_min)
def _map_to_x(self, val: np.ndarray) -> np.ndarray:
xmin, xmax = self._range_x
val = self._scale_to_range(val, xmin, xmax)
rescaled = (val * (self._width - 1))
return rescaled.astype(int)
def _map_to_y(self, val: np.ndarray) -> np.ndarray:
ymin, ymax = self._range_y
val = self._scale_to_range(val, ymin, ymax)
rescaled = (val * (self._height - 1))
return rescaled.astype(int)
def __call__(self, val_x, val_y):
"""
Take val_x and val_y, and associate the RGB values
from the reference picture to each item. val_x and val_y
must have the same shape.
"""
if val_x.shape != val_y.shape:
raise ValueError(f'x and y array must have the same shape, but have {val_x.shape} and {val_y.shape}.')
self._range_x = (np.amin(val_x), np.amax(val_x))
self._range_y = (np.amin(val_y), np.amax(val_y))
x_indices = self._map_to_x(val_x)
y_indices = self._map_to_y(val_y)
i_xy = np.stack((x_indices, y_indices), axis=-1)
rgb = np.zeros((*val_x.shape, 3))
for indices in np.ndindex(val_x.shape):
img_indices = tuple(i_xy[indices])
rgb[indices] = self._img[img_indices]
return rgb
def generate_cbar(self, nx=100, ny=100):
"generate an image that can be used as a 2D colorbar"
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
return self.__call__(*np.meshgrid(x, y))
Usage:
Full example, using the constant chroma reference taken from here as a screenshot:
# generate data
x = y = np.linspace(-2, 2, 300)
xx, yy = np.meshgrid(x, y)
ampl = np.exp(-(xx ** 2 + yy ** 2))
phase = (xx ** 2 - yy ** 2) * 6 * np.pi
data = ampl * np.exp(1j * phase)
data_x, data_y = np.abs(data), np.angle(data)
# Here is the 2D colormap part
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
rgb = cmap_2d(data_x, data_y)
cbar_rgb = cmap_2d.generate_cbar()
# plot the data
fig, plot_ax = plt.subplots(figsize=(8, 6))
plot_extent = (x.min(), x.max(), y.min(), y.max())
plot_ax.imshow(rgb, aspect='auto', extent=plot_extent, origin='lower')
plot_ax.set_xlabel('x')
plot_ax.set_ylabel('y')
plot_ax.set_title('data')
# create a 2D colorbar and make it fancy
plt.subplots_adjust(left=0.1, right=0.65)
bar_ax = fig.add_axes([0.68, 0.15, 0.15, 0.3])
cmap_extent = (data_x.min(), data_x.max(), data_y.min(), data_y.max())
bar_ax.imshow(cbar_rgb, extent=cmap_extent, aspect='auto', origin='lower',)
bar_ax.set_xlabel('amplitude')
bar_ax.set_ylabel('phase')
bar_ax.yaxis.tick_right()
bar_ax.yaxis.set_label_position('right')
for item in ([bar_ax.title, bar_ax.xaxis.label, bar_ax.yaxis.label] +
bar_ax.get_xticklabels() + bar_ax.get_yticklabels()):
item.set_fontsize(7)
plt.show()
I know this is an old post, but want to help out others that may arrive late. Below is a python function to implement complex_to_rgb from sage. Note: This implementation isn't optimal, but it is readable. See links: (examples)(source code)
Code:
import numpy as np
def complex_to_rgb(z_values):
width = z_values.shape[0]
height = z_values.shape[1]
rgb = np.zeros(shape=(width, height, 3))
for i in range(width):
row = z_values[i]
for j in range(height):
# define value, real(value), imag(value)
zz = row[j]
x = np.real(zz)
y = np.imag(zz)
# define magnitued and argument
magnitude = np.hypot(x, y)
arg = np.arctan2(y, x)
# define lighness
lightness = np.arctan(np.log(np.sqrt(magnitude) + 1)) * (4 / np.pi) - 1
if lightness < 0:
bot = 0
top = 1 + lightness
else:
bot = lightness
top = 1
# define hue
hue = 3 * arg / np.pi
if hue < 0:
hue += 6
# set ihue and use it to define rgb values based on cases
ihue = int(hue)
# case 1
if ihue == 0:
r = top
g = bot + hue * (top - bot)
b = bot
# case 2
elif ihue == 1:
r = bot + (2 - hue) * (top - bot)
g = top
b = bot
# case 3
elif ihue == 2:
r = bot
g = top
b = bot + (hue - 2) * (top - bot)
# case 4
elif ihue == 3:
r = bot
g = bot + (4 - hue) * (top - bot)
b = top
# case 5
elif ihue == 4:
r = bot + (hue - 4) * (top - bot)
g = bot
b = top
# case 6
else:
r = top
g = bot
b = bot + (6 - hue) * (top - bot)
# set rgb array values
rgb[i, j, 0] = r
rgb[i, j, 1] = g
rgb[i, j, 2] = b
return rgb