We can count occurrences of nan with df.isna().count()
Is there is a similar function to count inf?
This worked for me:
number_inf = df[df == np.inf].count()
use np.isinf()
df = pd.DataFrame({'data' : [0,0,float('inf'),float('inf')]})
print(df)
data
0 0.0
1 0.0
2 inf
3 inf
df.groupby(np.isinf(df['data'])).count()
data
data
False 2
True 2
you can use isinf() and ravel() in one line
# Pandas Series.ravel() function returns the flattened underlying data as an ndarray.
np.isinf(df["Col"]).values.ravel().sum()
Related
I am trying to count common string values in sequential rows of a panda series using a user defined function and to write an output into a new column. I figured out individual steps, but when I put them together, I get a wrong result. Could you please tell me the best way to do this? I am a very beginner Pythonista!
My pandas df is:
df = pd.DataFrame({"Code": ['d7e', '8e0d', 'ft1', '176', 'trk', 'tr71']})
My string comparison loop is:
x='d7e'
y='8e0d'
s=0
for i in y:
b=str(i)
if b not in x:
s+=0
else:
s+=1
print(s)
the right result for these particular strings is 2
Note, when I do def func(x,y): something happens to s counter and it doesn't produce the right result. I think I need to reset it to 0 every time the loop runs.
Then, I use df.shift to specify the position of y and x in a series:
x = df["Code"]
y = df["Code"].shift(periods=-1, axis=0)
And finally, I use df.apply() method to run the function:
df["R1SB"] = df.apply(func, axis=0)
and I get None values in my new column "R1SB"
My correct output would be:
"Code" "R1SB"
0 d7e None
1 8e0d 2
2 ft1 0
3 176 1
4 trk 0
5 tr71 2
Thank you for your help!
TRY:
df['R1SB'] = df.assign(temp=df.Code.shift(1)).apply(
lambda x: np.NAN
if pd.isna(x['temp'])
else sum(i in str(x['temp']) for i in str(x['Code'])),
1,
)
OUTPUT:
Code R1SB
0 d7e NaN
1 8e0d 2.0
2 ft1 0.0
3 176 1.0
4 trk 0.0
5 tr71 2.0
I have the following dataframe (time-series of returns truncated for succinctness):
import pandas as pd
import numpy as np
df = pd.DataFrame({'return':np.array([np.nan, np.nan, np.nan, 0.015, -0.024, 0.033, 0.021, 0.014, -0.092])})
I'm trying to start the index (i.e., "base-100") at the last NaN before the first return - while at the same time keep the NaNs preceding the 100 value in place - (thinking in terms of appending to existing dataframe and for graphing purposes).
I only have found a way to create said index when there are no NaNs in the return vector:
df['index'] = 100*np.exp(np.nan_to_num(df['return'].cumsum()))
Any ideas - thx in advance!
If your initial array is
zz = np.array([np.nan, np.nan, np.nan, 0.015, -0.024, 0.033, 0.021, 0.014, -0.092])
Then you can obtain your desired output like this (although there's probably a more optimized way to do it):
np.concatenate((zz[:np.argmax(np.isfinite(zz))],
100*np.exp(np.cumsum(zz[np.isfinite(zz)]))))
Use Series.isna, change order by indexing and get index of last NaN by Series.idxmax:
idx = df['return'].isna().iloc[::-1].idxmax()
Pass to DataFrame.loc, repalce missing value and use cumulative sum:
df['return'] = df.loc[idx:, 'return'].fillna(100).cumsum()
print (df)
return
0 NaN
1 NaN
2 100.000
3 100.015
4 99.991
5 100.024
6 100.045
7 100.059
8 99.967
You can use Series.isna with Series.cumsum and compare by max, then replace last NaN by Series.fillna and last use cumulative sum:
s = df['return'].isna().cumsum()
df['return'] = df['return'].mask(s.eq(s.max()), df['return'].fillna(100)).cumsum()
print (df)
return
0 NaN
1 NaN
2 100.000
3 100.015
4 99.991
5 100.024
6 100.045
7 100.059
8 99.967
I've got a pandas DataFrame filled mostly with real numbers, but there is a few nan values in it as well.
How can I replace the nans with averages of columns where they are?
This question is very similar to this one: numpy array: replace nan values with average of columns but, unfortunately, the solution given there doesn't work for a pandas DataFrame.
You can simply use DataFrame.fillna to fill the nan's directly:
In [27]: df
Out[27]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 NaN -2.027325 1.533582
4 NaN NaN 0.461821
5 -0.788073 NaN NaN
6 -0.916080 -0.612343 NaN
7 -0.887858 1.033826 NaN
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
In [28]: df.mean()
Out[28]:
A -0.151121
B -0.231291
C -0.530307
dtype: float64
In [29]: df.fillna(df.mean())
Out[29]:
A B C
0 -0.166919 0.979728 -0.632955
1 -0.297953 -0.912674 -1.365463
2 -0.120211 -0.540679 -0.680481
3 -0.151121 -2.027325 1.533582
4 -0.151121 -0.231291 0.461821
5 -0.788073 -0.231291 -0.530307
6 -0.916080 -0.612343 -0.530307
7 -0.887858 1.033826 -0.530307
8 1.948430 1.025011 -2.982224
9 0.019698 -0.795876 -0.046431
The docstring of fillna says that value should be a scalar or a dict, however, it seems to work with a Series as well. If you want to pass a dict, you could use df.mean().to_dict().
Try:
sub2['income'].fillna((sub2['income'].mean()), inplace=True)
In [16]: df = DataFrame(np.random.randn(10,3))
In [17]: df.iloc[3:5,0] = np.nan
In [18]: df.iloc[4:6,1] = np.nan
In [19]: df.iloc[5:8,2] = np.nan
In [20]: df
Out[20]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 NaN -0.985188 -0.324136
4 NaN NaN 0.238512
5 0.769657 NaN NaN
6 0.141951 0.326064 NaN
7 -1.694475 -0.523440 NaN
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
In [22]: df.mean()
Out[22]:
0 -0.251534
1 -0.040622
2 -0.841219
dtype: float64
Apply per-column the mean of that columns and fill
In [23]: df.apply(lambda x: x.fillna(x.mean()),axis=0)
Out[23]:
0 1 2
0 1.148272 0.227366 -2.368136
1 -0.820823 1.071471 -0.784713
2 0.157913 0.602857 0.665034
3 -0.251534 -0.985188 -0.324136
4 -0.251534 -0.040622 0.238512
5 0.769657 -0.040622 -0.841219
6 0.141951 0.326064 -0.841219
7 -1.694475 -0.523440 -0.841219
8 0.352556 -0.551487 -1.639298
9 -2.067324 -0.492617 -1.675794
Although, the below code does the job, BUT its performance takes a big hit, as you deal with a DataFrame with # records 100k or more:
df.fillna(df.mean())
In my experience, one should replace NaN values (be it with Mean or Median), only where it is required, rather than applying fillna() all over the DataFrame.
I had a DataFrame with 20 variables, and only 4 of them required NaN values treatment (replacement). I tried the above code (Code 1), along with a slightly modified version of it (code 2), where i ran it selectively .i.e. only on variables which had a NaN value
#------------------------------------------------
#----(Code 1) Treatment on overall DataFrame-----
df.fillna(df.mean())
#------------------------------------------------
#----(Code 2) Selective Treatment----------------
for i in df.columns[df.isnull().any(axis=0)]: #---Applying Only on variables with NaN values
df[i].fillna(df[i].mean(),inplace=True)
#---df.isnull().any(axis=0) gives True/False flag (Boolean value series),
#---which when applied on df.columns[], helps identify variables with NaN values
Below is the performance i observed, as i kept on increasing the # records in DataFrame
DataFrame with ~100k records
Code 1: 22.06 Seconds
Code 2: 0.03 Seconds
DataFrame with ~200k records
Code 1: 180.06 Seconds
Code 2: 0.06 Seconds
DataFrame with ~1.6 Million records
Code 1: code kept running endlessly
Code 2: 0.40 Seconds
DataFrame with ~13 Million records
Code 1: --did not even try, after seeing performance on 1.6 Mn records--
Code 2: 3.20 Seconds
Apologies for a long answer ! Hope this helps !
If you want to impute missing values with mean and you want to go column by column, then this will only impute with the mean of that column. This might be a little more readable.
sub2['income'] = sub2['income'].fillna((sub2['income'].mean()))
# To read data from csv file
Dataset = pd.read_csv('Data.csv')
X = Dataset.iloc[:, :-1].values
# To calculate mean use imputer class
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
Directly use df.fillna(df.mean()) to fill all the null value with mean
If you want to fill null value with mean of that column then you can use this
suppose x=df['Item_Weight'] here Item_Weight is column name
here we are assigning (fill null values of x with mean of x into x)
df['Item_Weight'] = df['Item_Weight'].fillna((df['Item_Weight'].mean()))
If you want to fill null value with some string then use
here Outlet_size is column name
df.Outlet_Size = df.Outlet_Size.fillna('Missing')
Pandas: How to replace NaN (nan) values with the average (mean), median or other statistics of one column
Say your DataFrame is df and you have one column called nr_items. This is: df['nr_items']
If you want to replace the NaN values of your column df['nr_items'] with the mean of the column:
Use method .fillna():
mean_value=df['nr_items'].mean()
df['nr_item_ave']=df['nr_items'].fillna(mean_value)
I have created a new df column called nr_item_ave to store the new column with the NaN values replaced by the mean value of the column.
You should be careful when using the mean. If you have outliers is more recommendable to use the median
Another option besides those above is:
df = df.groupby(df.columns, axis = 1).transform(lambda x: x.fillna(x.mean()))
It's less elegant than previous responses for mean, but it could be shorter if you desire to replace nulls by some other column function.
using sklearn library preprocessing class
from sklearn.impute import SimpleImputer
missingvalues = SimpleImputer(missing_values = np.nan, strategy = 'mean', axis = 0)
missingvalues = missingvalues.fit(x[:,1:3])
x[:,1:3] = missingvalues.transform(x[:,1:3])
Note: In the recent version parameter missing_values value change to np.nan from NaN
I use this method to fill missing values by average of a column.
fill_mean = lambda col : col.fillna(col.mean())
df = df.apply(fill_mean, axis = 0)
You can also use value_counts to get the most frequent values. This would work on different datatypes.
df = df.apply(lambda x:x.fillna(x.value_counts().index[0]))
Here is the value_counts api reference.
I am importing data into Pandas from Excel and I need to verify that the data is numeric based on the Columns.
month value dp wd ... mg fee pr comment
0 2013-07-31 208372.33 4206.84 4692.22 ... 0 0 0 some comment
1 2013-08-31 210669.77 0.00 1270.28 ... 0 0 0
There are about 20 columns and I only need to exclude the "month" and "comment" columns.
Is there something like: df.iloc[:, 2: 18].isnumeric() or will this require a loop?
I would like to get a True / False response.
thank you.
One way is select_dtypes and compare:
np.array_equal(df.select_dtypes(include='number').columns, df.columns[1:-1])
You can use apply method to apply series methods to columns of a dataframe.
df2 = df.drop(["month", "comment"], axis=1)
df2 = df2.apply(lambda x: x.str.isnumeric())
I have a dataframe with a column of floats that I want to convert to int:
> df['VEHICLE_ID'].head()
0 8659366.0
1 8659368.0
2 8652175.0
3 8652174.0
4 8651488.0
In theory I should just be able to use:
> df['VEHICLE_ID'] = df['VEHICLE_ID'].astype(int)
But I get:
Output: ValueError: Cannot convert NA to integer
But I am pretty sure that there are no NaNs in this series:
> df['VEHICLE_ID'].fillna(999,inplace=True)
> df[df['VEHICLE_ID'] == 999]
> Output: Empty DataFrame
Columns: [VEHICLE_ID]
Index: []
What's going on?
Basically the error is telling you that you NaN values and I will show why your attempts didn't reveal this:
In [7]:
# setup some data
df = pd.DataFrame({'a':[1.0, np.NaN, 3.0, 4.0]})
df
Out[7]:
a
0 1.0
1 NaN
2 3.0
3 4.0
now try to cast:
df['a'].astype(int)
this raises:
ValueError: Cannot convert NA to integer
but then you tried something like this:
In [5]:
for index, row in df['a'].iteritems():
if row == np.NaN:
print('index:', index, 'isnull')
this printed nothing, but NaN cannot be evaluated like this using equality, in fact it has a special property that it will return False when comparing against itself:
In [6]:
for index, row in df['a'].iteritems():
if row != row:
print('index:', index, 'isnull')
index: 1 isnull
now it prints the row, you should use isnull for readability:
In [9]:
for index, row in df['a'].iteritems():
if pd.isnull(row):
print('index:', index, 'isnull')
index: 1 isnull
So what to do? We can drop the rows: df.dropna(subset='a'), or we can replace using fillna:
In [8]:
df['a'].fillna(0).astype(int)
Out[8]:
0 1
1 0
2 3
3 4
Name: a, dtype: int32
When your series contains floats and nan's and you want to convert to integers, you will get an error when you do try to convert your float to a numpy integer, because there are na values.
DON'T DO:
df['VEHICLE_ID'] = df['VEHICLE_ID'].astype(int)
From pandas >= 0.24 there is now a built-in pandas integer. This does allow integer nan's. Notice the capital in 'Int64'. This is the pandas integer, instead of the numpy integer.
SO, DO THIS:
df['VEHICLE_ID'] = df['VEHICLE_ID'].astype('Int64')
More info on pandas integer na values:
https://pandas.pydata.org/pandas-docs/stable/user_guide/gotchas.html#nan-integer-na-values-and-na-type-promotions