How to make a simple Vandermonde matrix with numpy? - numpy

My question is how to make a vandermonde matrix. This is the definition:
In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row, i.e., an m × n matrix
I would like to make a 4*4 version of this.
So farI have defined values but only for one row as follows
a=2
n=4
for a in range(n):
for i in range(n):
v.append(a**i)
v = np.array(v)
print(v)
I dont know how to scale this. Please help!

Given a starting column a of length m you can create a Vandermonde matrix v with n columns a**0 to a**(n-1)like so:
import numpy as np
m = 4
n = 4
a = range(1, m+1)
v = np.array([a]*n).T**range(n)
print(v)
#[[ 1 1 1 1]
# [ 1 2 4 8]
# [ 1 3 9 27]
# [ 1 4 16 64]]

As proposed by michael szczesny you could use numpy.vander.
But this will not be according to the definition on Wikipedia.
x = np.array([1, 2, 3, 5])
N = 4
np.vander(x, N)
#array([[ 1, 1, 1, 1],
# [ 8, 4, 2, 1],
# [ 27, 9, 3, 1],
# [125, 25, 5, 1]])
So, you'd have to use numpy.fliplr aswell:
x = np.array([1, 2, 3, 5])
N = 4
np.fliplr(np.vander(x, N))
#array([[ 1, 1, 1, 1],
# [ 1, 2, 4, 8],
# [ 1, 3, 9, 27],
# [ 1, 5, 25, 125]])
This could also be achieved without numpy using nested list comprehensions:
x = [1, 2, 3, 5]
N = 4
[[xi**i for i in range(N)] for xi in x]
# [[1, 1, 1, 1],
# [1, 2, 4, 8],
# [1, 3, 9, 27],
# [1, 5, 25, 125]]

# Vandermonde Matrix
def Vandermonde_Matrix(D, k):
'''
D = {(x_i,y_i): 0<=i<=n}
----------------
k degree
'''
n = len(D)
V = np.zeros(shape=(n, k))
for i in range(n):
V[i] = np.power(np.array(D[i][0]), np.arange(k))
return V

Related

Given two arrays, `a` and `b`, how to find efficiently all combinations of elements in `b` that have equal value in `a`?

Given two arrays, a and b, how to find efficiently all combinations of elements in b that have equal value in a?
here is an example:
Given
a = [0, 0, 0, 1, 1, 2, 2, 2, 2]
b = [1, 2, 4, 5, 9, 3, 7, 22, 10]
how would you calculate
c = [[1, 2],
[1, 4],
[2, 4],
[5, 9],
[3, 7],
[3, 22],
[3, 10],
[7, 22],
[7, 10],
[22, 10]]
?
a can be assumed to be sorted.
I can do this with loops, a la:
import torch
a = torch.tensor([0, 0, 0, 1, 1, 2, 2, 2, 2])
b = torch.tensor([1, 2, 4, 5, 9, 3, 7, 22, 10])
jumps = torch.cat((torch.tensor([0]),
torch.where(a.diff() > 0)[0] + 1,
torch.tensor([len(a)])))
cs = []
for i in range(len(jumps) - 1):
cs.append(torch.combinations(b[jumps[i]:jumps[i + 1]]))
c = torch.cat(cs)
Is there any efficient way to avoid the loop? The solution should work for CPU and CUDA.
Also, the solution should have runtime O(m * m), where m is the largest number of equal elements in a and not O(n * n) where n is the length of of a.
I prefer solutions for pytorch, but I am curious for solution for numpy as well.
I think the overhead of using torch is only justified for bigger datasets, as there is basically no computational difficulty in the function, imho you can achieve same results with:
from collections import Counter
def find_combinations1(a, b):
count_a = Counter(a)
combinations = []
for x in set(b):
if count_a[x] == b.count(x):
combinations.append(x)
return combinations
or even a simpler:
def find_combinations2(a, b):
return list(set(a) & set(b))
With pytorch I assume the most simple approach is:
import torch
def find_combinations3(a, b):
a = torch.tensor(a)
b = torch.tensor(b)
eq = torch.eq(a, b.view(-1, 1))
indices = torch.nonzero(eq)
return indices[:, 1]
This option has of course a time complexity of O(n*m) where n is the size of a and m is the size of b, and O(n+m) is the memory for the tensors.

Find duplicated sequences in numpy.array or pandas column

For example, I have got an array like this:
([ 1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5 ])
I need to find all duplicated sequences , not values, but sequences of at least two values one by one.
The result should be like this:
of length 2: [1, 5] with indexes (0, 16);
of length 3: [3, 3, 7] with indexes (6, 12); [7, 9, 4] with indexes (2, 8)
The long sequences should be excluded, if they are not duplicated. ([5, 5, 5, 5]) should NOT be taken as [5, 5] on indexes (0, 1, 2)! It's not a duplicate sequence, it's one long sequence.
I can do it with pandas.apply function, but it calculates too slow, swifter did not help me.
And in real life I need to find all of them, with length from 10 up to 100 values one by one on database with 1500 columns with 700 000 values each. So i really do need a vectorized decision.
Is there a vectorized decision for finding all at once? Or at least for finding only 10-values sequences? Or only 4-values sequences? Anything, that will be fully vectorized?
One possible implementation (although not fully vectorized) that finds all sequences of size n that appear more than once is the following:
import numpy as np
def repeated_sequences(arr, n):
Na = arr.size
r_seq = np.arange(n)
n_seqs = arr[np.arange(Na - n + 1)[:, None] + r_seq]
unique_seqs = np.unique(n_seqs, axis=0)
comp = n_seqs == unique_seqs[:, None]
M = np.all(comp, axis=-1)
if M.any():
matches = np.array(
[np.convolve(M[i], np.ones((n), dtype=int)) for i in range(M.shape[0])]
)
repeated_inds = np.count_nonzero(matches, axis=-1) > n
repeated_matches = matches[repeated_inds]
idxs = np.argwhere(repeated_matches > 0)[::n]
grouped_idxs = np.split(
idxs[:, 1], np.unique(idxs[:, 0], return_index=True)[1][1:]
)
else:
return [], []
return unique_seqs[repeated_inds], grouped_idxs
In theory, you could replace
matches = np.array(
[np.convolve(M[i], np.ones((n), dtype=int)) for i in range(M.shape[0])]
)
with
matches = scipy.signal.convolve(
M, np.ones((1, n), dtype=int), mode="full"
).astype(int)
which would make the whole thing "fully vectorized", but my tests showed that this was 3 to 4 times slower than the for-loop. So I'd stick with that. Or simply,
matches = np.apply_along_axis(np.convolve, -1, M, np.ones((n), dtype=int))
which does not have any significant speed-up, since it's basically a hidden loop (see this).
This is based off #Divakar's answer here that dealt with a very similar problem, in which the sequence to look for was provided. I simply made it so that it could follow this procedure for all possible sequences of size n, which are found inside the function with n_seqs = arr[np.arange(Na - n + 1)[:, None] + r_seq]; unique_seqs = np.unique(n_seqs, axis=0).
For example,
>>> a = np.array([1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5])
>>> repeated_seqs, inds = repeated_sequences(a, n)
>>> for i, seq in enumerate(repeated_seqs[:10]):
...: print(f"{seq} with indexes {inds[i]}")
...:
[3 3 7] with indexes [ 6 12]
[7 9 4] with indexes [2 8]
Disclaimer
The long sequences should be excluded, if they are not duplicated. ([5, 5, 5, 5]) should NOT be taken as [5, 5] on indexes (0, 1, 2)! It's not a duplicate sequence, it's one long sequence.
This is not directly taken into account and the sequence [5, 5] would appear more than once according to this algorithm. You could do something like this, based off #Paul's answer here, but it involves a loop:
import numpy as np
repeated_matches = np.array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]])
idxs = np.argwhere(repeated_matches > 0)
grouped_idxs = np.split(
idxs[:, 1], np.unique(idxs[:, 0], return_index=True)[1][1:]
)
>>> print(grouped_idxs)
[array([ 6, 7, 8, 12, 13, 14], dtype=int64),
array([ 7, 8, 9, 10], dtype=int64)]
# If there are consecutive numbers in grouped_idxs, that means that there is a long
# sequence that should be excluded. So, you'd have to check for consecutive numbers
filtered_idxs = []
for idx in grouped_idxs:
if not all((idx[1:] - idx[:-1]) == 1):
filtered_idxs.append(idx)
>>> print(filtered_idxs)
[array([ 6, 7, 8, 12, 13, 14], dtype=int64)]
Some tests:
>>> n = 3
>>> a = np.array([1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5])
>>> %timeit repeated_sequences(a, n)
414 µs ± 5.88 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> n = 4
>>> a = np.random.randint(0, 10, (10000,))
>>> %timeit repeated_sequences(a, n)
3.88 s ± 54 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
>>> result, _ = repeated_sequences(a, n)
>>> result.shape
(2637, 4)
This is not the most efficient implementation by far, but it works as a 2D approach. Plus, if there aren't any repeated sequences, it returns empty lists.
EDIT: Full implementation
I vectorized the routine I added in the Disclaimer section as a possible solution to the long sequence problem and ended up with the following:
import numpy as np
# Taken from:
# https://stackoverflow.com/questions/53051560/stacking-numpy-arrays-of-different-length-using-padding
def stack_padding(it):
def resize(row, size):
new = np.array(row)
new.resize(size)
return new
row_length = max(it, key=len).__len__()
mat = np.array([resize(row, row_length) for row in it])
return mat
def repeated_sequences(arr, n):
Na = arr.size
r_seq = np.arange(n)
n_seqs = arr[np.arange(Na - n + 1)[:, None] + r_seq]
unique_seqs = np.unique(n_seqs, axis=0)
comp = n_seqs == unique_seqs[:, None]
M = np.all(comp, axis=-1)
repeated_seqs = []
idxs_repeated_seqs = []
if M.any():
matches = np.apply_along_axis(np.convolve, -1, M, np.ones((n), dtype=int))
repeated_inds = np.count_nonzero(matches, axis=-1) > n
if repeated_inds.any():
repeated_matches = matches[repeated_inds]
idxs = np.argwhere(repeated_matches > 0)
grouped_idxs = np.split(
idxs[:, 1], np.unique(idxs[:, 0], return_index=True)[1][1:]
)
# Additional routine
# Pad this uneven array with zeros so that we can use it normally
grouped_idxs = np.array(grouped_idxs, dtype=object)
padded_idxs = stack_padding(grouped_idxs)
# Find the indices where there are padded zeros
pad_positions = padded_idxs == 0
# Perform the "consecutive-numbers check" (this will take one
# item off the original array, so we have to correct for its shape).
idxs_to_remove= np.pad(
(padded_idxs[:, 1:] - padded_idxs[:, :-1]) == 1,
[(0, 0), (0, 1)],
constant_values=True,
)
pad_positions = np.argwhere(pad_positions)
i = pad_positions[:, 0]
j = pad_positions[:, 1] - 1 # Shift by one (shape correction)
idxs_to_remove[i, j] = True # Masking, since we don't want pad indices
# Obtain a final mask (boolean opposite of indices to remove)
final_mask = ~idxs_to_remove.all(axis=-1)
grouped_idxs = grouped_idxs[final_mask] # Filter the long sequences
repeated_seqs = unique_seqs[repeated_inds][final_mask]
# In order to get the correct indices, we must first limit the
# search to a shape (on axis=1) of the closest multiple of n.
# This will avoid taking more indices than we should to show where
# each repeated sequence begins
to = padded_idxs.shape[1] & (-n)
# Build the final list of indices (that goes from 0 - to with
# a step of n
idxs_repeated_seqs = [
grouped_idxs[i][:to:n] for i in range(grouped_idxs.shape[0])
]
return repeated_seqs, idxs_repeated_seqs
For example,
n = 2
examples = [
# First example is your original example array.
np.array([1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5]),
# Second example has a long sequence of 5's, and since there aren't
# any [5, 5] anywhere else, it's not taken into account and therefore
# should not come out.
np.array([1, 5, 5, 5, 5, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5]),
# Third example has the same long sequence but since there is a [5, 5]
# later, then it should take it into account and this sequence should
# be found.
np.array([1, 5, 5, 5, 5, 6, 5, 5, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5]),
# Fourth example has a [5, 5] first and later it has a long sequence of
# 5's which are uneven and the previous implementation got confused with
# the indices to show as the starting indices. In this case, it should be
# 1, 13 and 15 for [5, 5].
np.array([1, 5, 5, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 5, 5, 5, 5, 5]),
]
for a in examples:
print(f"\nExample: {a}")
repeated_seqs, inds = repeated_sequences(a, n)
for i, seq in enumerate(repeated_seqs):
print(f"\t{seq} with indexes {inds[i]}")
Output (as expected):
Example: [1 5 7 9 4 6 3 3 7 9 4 0 3 3 7 8 1 5]
[1 5] with indexes [0 16]
[3 3] with indexes [6 12]
[3 7] with indexes [7 13]
[7 9] with indexes [2 8]
[9 4] with indexes [3 9]
Example: [1 5 5 5 5 6 3 3 7 9 4 0 3 3 7 8 1 5]
[1 5] with indexes [0 16]
[3 3] with indexes [6 12]
[3 7] with indexes [7 13]
Example: [1 5 5 5 5 6 5 5 7 9 4 0 3 3 7 8 1 5]
[1 5] with indexes [ 0 16]
[5 5] with indexes [1 3 6]
Example: [1 5 5 9 4 6 3 3 7 9 4 0 3 5 5 5 5 5]
[5 5] with indexes [ 1 13 15]
[9 4] with indexes [3 9]
You can test it out yourself with more examples and more cases. Keep in mind this is what I understood from your disclaimer. If you want to count the long sequences as one, even if multiple sequences are in there (for example, [5, 5] appears twice in [5, 5, 5, 5]), this won't work for you and you'd have to come up with something else.

Create triangular mesh from vertex coordinates

Given a set of 2d data points with coordinates x and y (left picture), is there an easy way to construct a triangular mesh on top of it (right picture)? i.e. return a list of tuples that indicates which vertices are connected. The solution is not unique, but any reasonable mesh would suffice.
You can use scipy.spatial.Delaunay. Here is an example from the
import numpy as np
points = np.array([[-1,1],[-1.3, .6],[0,0],[.2,.8],[1,.85],[-.1,-.4],[.4,-.15],[.6,-.6],[.9,-.2]])
from scipy.spatial import Delaunay
tri = Delaunay(points)
import matplotlib.pyplot as plt
plt.triplot(points[:,0], points[:,1], tri.simplices)
plt.plot(points[:,0], points[:,1], 'o')
plt.show()
Here is the result on an input similar to yours:
The triangles are stored in the simplices attribute of the Delaunay object which reference the coordinates stored in the points attribute:
>>> tri.points
array([[-1. , 1. ],
[-1.3 , 0.6 ],
[ 0. , 0. ],
[ 0.2 , 0.8 ],
[ 1. , 0.85],
[-0.1 , -0.4 ],
[ 0.4 , -0.15],
[ 0.6 , -0.6 ],
[ 0.9 , -0.2 ]])
>>> tri.simplices
array([[5, 2, 1],
[0, 3, 4],
[2, 0, 1],
[3, 0, 2],
[8, 6, 7],
[6, 5, 7],
[5, 6, 2],
[6, 3, 2],
[3, 6, 4],
[6, 8, 4]], dtype=int32)
If you are looking for which vertices are connected, there is an attribute containing that info also:
>>> tri.vertex_neighbor_vertices
(array([ 0, 4, 7, 12, 16, 20, 24, 30, 33, 36], dtype=int32), array([3, 4, 2, 1, 5, 2, 0, 5, 1, 0, 3, 6, 0, 4, 2, 6, 0, 3, 6, 8, 2, 1,
6, 7, 8, 7, 5, 2, 3, 4, 8, 6, 5, 6, 7, 4], dtype=int32))
You can try scipy.spatial.Delaunay. From that link:
points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
from scipy.spatial import Delaunay
tri = Delaunay(points)
plt.triplot(points[:,0], points[:,1], tri.simplices)
plt.plot(points[:,0], points[:,1], 'o')
plt.show()
Output:
I think Delanuay gives something closer to a convex hull. In OP's picture A is not connected to C, it is connected to B which is connected to C which gives a different shape.
One solution could be running Delanuay first then removing triangles whose angles exceed a certain degree, eg 90, or 100. A prelim code could look like
from scipy.spatial import Delaunay
points = [[101, 357], [198, 327], [316, 334], [ 58, 299], [162, 258], [217, 240], [310, 236], [153, 207], [257, 163]]
points = np.array(points)
tri = Delaunay(points,furthest_site=False)
newsimp = []
for t in tri.simplices:
A,B,C = points[t[0]],points[t[1]],points[t[2]]
e1 = B-A; e2 = C-A
num = np.dot(e1, e2)
denom = np.linalg.norm(e1) * np.linalg.norm(e2)
d1 = np.rad2deg(np.arccos(num/denom))
e1 = C-B; e2 = A-B
num = np.dot(e1, e2)
denom = np.linalg.norm(e1) * np.linalg.norm(e2)
d2 = np.rad2deg(np.arccos(num/denom))
d3 = 180-d1-d2
degs = np.array([d1,d2,d3])
if np.any(degs > 110): continue
newsimp.append(t)
plt.triplot(points[:,0], points[:,1], newsimp)
which gives the shape seen above. For more complicated shapes removing large sides could be necessary too,
for t in tri.simplices:
...
n1 = np.linalg.norm(e1); n2 = np.linalg.norm(e2)
...
res.append([n1,n2,d1,d2,d3])
res = np.array(res)
m = res[:,[0,1]].mean()*res[:,[0,1]].std()
mask = np.any(res[:,[2,3,4]] > 110) & (res[:,0] < m) & (res[:,1] < m )
plt.triplot(points[:,0], points[:,1], tri.simplices[mask])

Efficiently construct numpy matrix from offset ranges of 1D array [duplicate]

Lets say I have a Python Numpy array a.
a = numpy.array([1,2,3,4,5,6,7,8,9,10,11])
I want to create a matrix of sub sequences from this array of length 5 with stride 3. The results matrix hence will look as follows:
numpy.array([[1,2,3,4,5],[4,5,6,7,8],[7,8,9,10,11]])
One possible way of implementing this would be using a for-loop.
result_matrix = np.zeros((3, 5))
for i in range(0, len(a), 3):
result_matrix[i] = a[i:i+5]
Is there a cleaner way to implement this in Numpy?
Approach #1 : Using broadcasting -
def broadcasting_app(a, L, S ): # Window len = L, Stride len/stepsize = S
nrows = ((a.size-L)//S)+1
return a[S*np.arange(nrows)[:,None] + np.arange(L)]
Approach #2 : Using more efficient NumPy strides -
def strided_app(a, L, S ): # Window len = L, Stride len/stepsize = S
nrows = ((a.size-L)//S)+1
n = a.strides[0]
return np.lib.stride_tricks.as_strided(a, shape=(nrows,L), strides=(S*n,n))
Sample run -
In [143]: a
Out[143]: array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
In [144]: broadcasting_app(a, L = 5, S = 3)
Out[144]:
array([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, 7, 8],
[ 7, 8, 9, 10, 11]])
In [145]: strided_app(a, L = 5, S = 3)
Out[145]:
array([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, 7, 8],
[ 7, 8, 9, 10, 11]])
Starting in Numpy 1.20, we can make use of the new sliding_window_view to slide/roll over windows of elements.
And coupled with a stepping [::3], it simply becomes:
from numpy.lib.stride_tricks import sliding_window_view
# values = np.array([1,2,3,4,5,6,7,8,9,10,11])
sliding_window_view(values, window_shape = 5)[::3]
# array([[ 1, 2, 3, 4, 5],
# [ 4, 5, 6, 7, 8],
# [ 7, 8, 9, 10, 11]])
where the intermediate result of the sliding is:
sliding_window_view(values, window_shape = 5)
# array([[ 1, 2, 3, 4, 5],
# [ 2, 3, 4, 5, 6],
# [ 3, 4, 5, 6, 7],
# [ 4, 5, 6, 7, 8],
# [ 5, 6, 7, 8, 9],
# [ 6, 7, 8, 9, 10],
# [ 7, 8, 9, 10, 11]])
Modified version of #Divakar's code with checking to ensure that memory is contiguous and that the returned array cannot be modified. (Variable names changed for my DSP application).
def frame(a, framelen, frameadv):
"""frame - Frame a 1D array
a - 1D array
framelen - Samples per frame
frameadv - Samples between starts of consecutive frames
Set to framelen for non-overlaping consecutive frames
Modified from Divakar's 10/17/16 11:20 solution:
https://stackoverflow.com/questions/40084931/taking-subarrays-from-numpy-array-with-given-stride-stepsize
CAVEATS:
Assumes array is contiguous
Output is not writable as there are multiple views on the same memory
"""
if not isinstance(a, np.ndarray) or \
not (a.flags['C_CONTIGUOUS'] or a.flags['F_CONTIGUOUS']):
raise ValueError("Input array a must be a contiguous numpy array")
# Output
nrows = ((a.size-framelen)//frameadv)+1
oshape = (nrows, framelen)
# Size of each element in a
n = a.strides[0]
# Indexing in the new object will advance by frameadv * element size
ostrides = (frameadv*n, n)
return np.lib.stride_tricks.as_strided(a, shape=oshape,
strides=ostrides, writeable=False)

Elegantly generate result array in numpy

I have my X and Y numpy arrays:
X = np.array([0,1,2,3])
Y = np.array([0,1,2,3])
And my function which maps x,y values to Z points:
def z(x,y):
return x+y
I wish to produce the obvious thing required for a 3D plot: the 2-dimensional numpy array for the corresponding Z-values. I believe it should look like:
Z = np.array([[0, 1, 2, 3],
[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6]])
I can do this in several lines, but I'm looking for the briefest most elegant piece of code.
For a function that is array aware it is more economical to use an open grid:
>>> import numpy as np
>>>
>>> X = np.array([0,1,2,3])
>>> Y = np.array([0,1,2,3])
>>>
>>> def z(x,y):
... return x+y
...
>>> XX, YY = np.ix_(X, Y)
>>> XX, YY
(array([[0],
[1],
[2],
[3]]), array([[0, 1, 2, 3]]))
>>> z(XX, YY)
array([[0, 1, 2, 3],
[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6]])
If your grid axes are ranges you can directly create the grid using np.ogrid
>>> XX, YY = np.ogrid[:4, :4]
>>> XX, YY
(array([[0],
[1],
[2],
[3]]), array([[0, 1, 2, 3]]))
If the function is not array aware you can make it so using np.vectorize:
>>> def f(x, y):
... if x > y:
... return x
... else:
... return -x
...
>>> np.vectorize(f)(*np.ogrid[-3:4, -3:4])
array([[ 3, 3, 3, 3, 3, 3, 3],
[-2, 2, 2, 2, 2, 2, 2],
[-1, -1, 1, 1, 1, 1, 1],
[ 0, 0, 0, 0, 0, 0, 0],
[ 1, 1, 1, 1, -1, -1, -1],
[ 2, 2, 2, 2, 2, -2, -2],
[ 3, 3, 3, 3, 3, 3, -3]])
One very short way to achieve what you want is to produce a meshgrid from your coordinates:
X,Y = np.meshgrid(x,y)
z = X+Y
or more general:
z = f(X,Y)
or even in one line:
z = f(*np.meshgrid(x,y))
EDIT:
If your function also may return a constant, you have to somehow infer the dimensions that the result should have. If you want to continue using meshgrids one very simple way would be re-write your function in this way:
def f(x,y):
return x*0+y*0+a
where a would be your constant. numpy would then take care of the dimensions for you. This is of course a bit weird looking, so instead you could write
def f(x,y):
return np.full(x.shape, a)
If you really want to go with functions that work both on scalars and arrays, it's probably best to go with np.vectorize as in #PaulPanzer's answer.