Context:
I am working with some complicated schema and have got many CTEs and joins to get to this point. This is a watered-down version and completely different source data and example to illustrate my point (data anonymity). Hopefully it provides enough of a snapshot.
Data Overview:
I have a service which generates a production forecast looking ahead 30 days. The forecast is generated for each facility, for each shift (morning/afternoon). Each forecast produced covers all shifts (morning/afternoon/evening) so they share a common generation_id but different forecast_profile_key.
What I am trying to do: I want to find the SUM of the forecast error for a given forecast generation constrained by a dynamic date range based on whether the date is a weekday or weekend. The SUM must be grouped only on similar IDs.
Basically, the temp table provides one record per facility per date per shift with the forecast error. I want to SUM the historical error dynamically for a facility/shift/date based on whether the date is weekday/weekend, and only SUM the error where the IDs match up.. (hope that makes sense!!)
Specifics: I want to find the SUM grouped by 'week_part_grouping', 'forecast_profile_key', 'forecast_profile' and 'forecast_generation_id'. The part I am struggling with is that I only want to SUM the error dynamically based on date: (a) if the date is a weekday, I want to SUM the error from up to the 5 recent-most days in a 7 day look back period, or (b) if the date is a weekend, I want to SUM the error from up to the 3 recent-most days in a 16 day look back period.
Ideally, having an extra column for 'total_forecast_error_in_lookback_range'.
Specific examples:
For 'facility_a', '2020-11-22' is a weekend. The lookback range is 16 days, so any date between '2020-11-21' and '2020-11-05' is eligible. The 3 recent-most dates would be '2020-11-21', '2020-11-15' and '2020-11'14'. Therefore, the sum of error would be 2000+3250+1050.
For 'facility_a', '2020-11-20' is a weekday. The lookback range is 7 days, so any date between '2020-11-19 and '2020-11-13'. That would work out to be '2020-11-19':'2020-11-16' and '2020-11-13'.
For 'facility_b', notice there is a change in the 'forecast_generation_id'. So, the error for '2020-11-20' would be only be 4565.
What I have tried: I'll confess to not being quite sure how to break down this portion. I did consider a case statement on the week_part but then got into a nested mess. I considered using a RANK windowed function but I didn't make much progress as was unsure how to implement the dynamic lookback component. I then also thought about doing some LISTAGG to get all the dates and do a REGEXP wildcard lookup but that would be very slow..
I am seeking pointers how to go about achieving this in SQL. I don't know if I am missing something from my toolkit here to go about breaking this down into something I can implement.
DROP TABLE IF EXISTS seventh__error_calc;
create temporary table seventh__error_calc
(
facility_name varchar,
shift varchar,
date_actuals date,
week_part_grouping varchar,
forecast_profile_key varchar,
forecast_profile_id varchar,
forecast_generation_id varchar,
count_dates_in_forecast bigint,
forecast_error bigint
);
Insert into seventh__error_calc
VALUES
('facility_a','morning','2020-11-22','weekend','facility_a_morning_Sat_Sun','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','1000'),
('facility_a','morning','2020-11-21','weekend','facility_a_morning_Sat_Sun','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2000'),
('facility_a','morning','2020-11-20','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','3000'),
('facility_a','morning','2020-11-19','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2500'),
('facility_a','morning','2020-11-18','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','1200'),
('facility_a','morning','2020-11-17','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','5000'),
('facility_a','morning','2020-11-16','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','4400'),
('facility_a','morning','2020-11-15','weekend','facility_a_morning_Sat_Sun','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','3250'),
('facility_a','morning','2020-11-14','weekend','facility_a_morning_Sat_Sun','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','1050'),
('facility_a','morning','2020-11-13','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2450'),
('facility_a','morning','2020-11-12','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2450'),
('facility_a','morning','2020-11-11','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2450'),
('facility_a','morning','2020-11-10','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2450'),
('facility_a','morning','2020-11-09','weekday','facility_a_morning_Mon_Fri','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2450'),
('facility_a','morning','2020-11-08','weekend','facility_a_morning_Sat_Sun','Profile#facility_a#dfc3989b#b6e5386a','6809dea6','8','2450'),
('facility_b','morning','2020-11-22','weekend','facility_b_morning_Sat_Sun','Profile#facility_b#dfc3989b#b6e5386a','6809dea6','8','3400'),
('facility_b','morning','2020-11-21','weekend','facility_b_morning_Sat_Sun','Profile#facility_b#dfc3989b#b6e5386a','6809dea6','8','2800'),
('facility_b','morning','2020-11-20','weekday','facility_b_morning_Mon_Fri','Profile#facility_b#dfc3989b#b6e5386a','6809dea6','8','3687'),
('facility_b','morning','2020-11-19','weekday','facility_b_morning_Mon_Fri','Profile#facility_b#dfc3989b#b6e5386a','6809dea6','8','4565'),
('facility_b','morning','2020-11-18','weekday','facility_b_morning_Mon_Fri','Profile#facility_b#dfc3989b#b6e5386a','7252fzw5','8','1262'),
('facility_b','morning','2020-11-17','weekday','facility_b_morning_Mon_Fri','Profile#facility_b#dfc3989b#b6e5386a','7252fzw5','8','8765'),
('facility_b','morning','2020-11-16','weekday','facility_b_morning_Mon_Fri','Profile#facility_b#dfc3989b#b6e5386a','7252fzw5','8','5678'),
('facility_b','morning','2020-11-15','weekend','facility_b_morning_Mon_Fri','Profile#facility_b#dfc3989b#b6e5386a','7252fzw5','8','2893'),
('facility_b','morning','2020-11-14','weekend','facility_b_morning_Sat_Sun','Profile#facility_b#dfc3989b#b6e5386a','7252fzw5','8','1928'),
('facility_b','morning','2020-11-13','weekday','facility_b_morning_Sat_Sun','Profile#facility_b#dfc3989b#b6e5386a','7252fzw5','8','4736')
;
SELECT *
FROM seventh__error_calc
This achieved what I was trying to do. There were two learning points here.
Self Joins. I've never used one before but can now see why they are powerful!
Using a CASE statement in the WHERE clause.
Hope this might help someone else some day!
select facility_name,
forecast_profile_key,
forecast_profile_id,
shift,
date_actuals,
week_part_grouping,
forecast_generation_id,
sum(forecast_error) forecast_err_calc
from (
select rank() over (partition by forecast_profile_id, forecast_profile_key, facility_name, a.date_actuals order by b.date_actuals desc) rnk,
a.facility_name, a.forecast_profile_key, a.forecast_profile_id, a.shift, a.date_actuals, a.week_part_grouping, a.forecast_generation_id, b.forecast_error
from seventh__error_calc a
join seventh__error_calc b
using (facility_name, forecast_profile_key, forecast_profile_id, week_part_grouping, forecast_generation_id)
where case when a.week_part_grouping = 'weekend' then b.date_actuals between a.date_actuals - 16 and a.date_actuals
when a.week_part_grouping = 'weekday' then b.date_actuals between a.date_actuals - 7 and a.date_actuals
end
) src
where case when week_part_grouping = 'weekend' then rnk < 4
when week_part_grouping = 'weekday' then rnk < 6
end
I work for a sports film analysis company. We have teams with unique team IDs and I would like to find the number of consecutive weeks they have uploaded film to our site moving backwards from today. Each upload also has its own row in a separate table that I can join on teamid and has a unique date of when it was uploaded. So far I put together a simple query that pulls each unique DATEDIFF(week) value and groups on teamid.
Select teamid, MAX(weekdiff)
(Select teamid, DATEDIFF(week, dateuploaded, GETDATE()) as weekdiff
from leroy_events
group by teamid, weekdiff)
What I am given is a list of teamIDs and unique weekly date differences. I would like to then find the max for each teamID without breaking an increment of 1. For example, if my data set is:
Team datediff
11453 0
11453 1
11453 2
11453 5
11453 7
11453 13
I would like the max value for team: 11453 to be 2.
Any ideas would be awesome.
I have simplified your example assuming that I already have a table with weekdiff column. That would be what you're doing with DATEDIFF to calculate it.
First, I'm using LAG() window function to assign previous value (in ordered set) of a weekdiff to the current row.
Then, using a WHERE condition I'm retrieving max(weekdiff) value that has a previous value which is current_value - 1 for consecutive weekdiffs.
Data:
create table leroy_events ( teamid int, weekdiff int);
insert into leroy_events values (11453,0),(11453,1),(11453,2),(11453,5),(11453,7),(11453,13);
Code:
WITH initial_data AS (
Select
teamid,
weekdiff,
lag(weekdiff,1) over (partition by teamid order by weekdiff) as lag_weekdiff
from
leroy_events
)
SELECT
teamid,
max(weekdiff) AS max_weekdiff_consecutive
FROM
initial_data
WHERE weekdiff = lag_weekdiff + 1 -- this insures retrieving max() without breaking your consecutive increment
GROUP BY 1
SQLFiddle with your sample data to see how this code works.
Result:
teamid max_weekdiff_consecutive
11453 2
You can use SQL window functions to probe relationships between rows of the table. In this case the lag() function can be used to look at the previous row relative to a given order and grouping. That way you can determine whether a given row is part of a group of consecutive rows.
You still need overall to aggregate or filter to reduce the number of rows for each group of interest (i.e. each team) to 1. It's convenient in this case to aggregate. Overall, it might look like this:
select
team,
case min(datediff)
when 0 then max(datediff)
else -1
end as max_weeks
from (
select
team,
datediff,
case
when (lag(datediff) over (partition by team order by datediff) != datediff - 1)
then 0
else 1
end as is_consec
from diffs
) cd
where is_consec = 1
group by team
The inline view just adds an is_consec column to the data, marking whether each row is part of a group of consecutive rows. The outer query filters on that column (you cannot filter directly on a window function), and chooses the maximum datediff from the remaining rows for each team.
There are a few subtleties there:
The case expression in the inline view is written as it is to exploit the fact that the lag() computed for the first row of each partition will be NULL, which does not evaluate unequal (nor equal) to any value. Thus the first row in each partition is always marked consecutive.
The case testing min(datediff) in the outer select clause picks up teams that have no record with datediff = 0, and assigns -1 to column max_weeks for them.
It would also have been possible to mark rows non-consecutive if the first in their group did not have datediff = 0, but then you would lose such teams from the results altogether.